平成26年度合同会合 2014.8.1 筑波大学 大学会館

モデリングの現状 トカマクダイバータシミュレーション

原子力機構

contents

- 1. 国際的進展(PSI2014概要)
- 2. 国内活動(原型炉ダイバータシミュレーション)

3. 日欧共同研究

1.国際的進展(PSI2014概要)

<u>http://psi2014.nifs.ac.jp/talks.html</u> を参照してください。

2. 国内活動(原型炉ダイバータシミュレーション)

Power exhaust study for SlimCS ($P_{fus} = 3GW$) in 2012

- Enhancement of P_{rad}^{div} and P_{rad}^{SOL+edge} and "Full detachment" were required.
- ⇒ Divertor operation consistent with q_{target} (incl. radiation load) < 10MWm⁻² was seen *only in specific conditions such as enhanced diffusion.*
- Seeding impurity selection: higher Z (Ar/Kr) is preferable to increase P_{rad}^{SOL} issue: dilution in core plasma, and potentially, P_{rad}^{edge} restriction for good confinement.
- Longer leg divertor design: effective for full detachment and P_{rad}^{div} enhancement issues: reduction in ion and neutral fluxes, and optimization with He exhaust
- Plasma diffusion large impact on detachment and energy dissipation, suggesting that *global/ local enhancement* promotes full detachment. Issues: extrapolation to Demo, techniques.

[1] K. Hoshino, et al. Contrib. Plasma Phys. 52 (2012) 550. [2] N. Asakura, et al. Nucl. Fusion, 53 (2013) 123013.

Demo design for $P_{out}/R = 30-60$ started from 2013

- Design parameters for power exhaust with P_{out}/R = 30-60: 2-4 times larger than ITER
 P_{fus} = 1.5-2GW level (P_{out} = 300-400MW) and R = 7-9 m.
- Large f_{rad} = 0.8-0.9 and ITER divertor technology (W&Cu-alloy) will be still required, while experiments with high H-factor and radiation loss are limited up to f_{rad} = 0.7-0.8.
 ⇒ Developments of the divertor physics and engineering/technology are necessary.

Nearly full-detachment was obtained in reduced P_{fus}

 $P_{out} = 500 \Rightarrow 320MW (P_{fus} \text{ decreases from 3GW to 2 GW})$

SONIC solution of $f_{rad} \sim 92\%$ (P_{rad}=295MW) was obtained by Ar puff of 10 Pa/m³s Impurity radiation moves upstream \Rightarrow detached region further extends to 12cm. \Rightarrow The peak heat load decreases to 6MW/m². Note: thermal instability at the divertor will be investigated in future. MW/m³ 100 90 80 70 60 50 40 30 20 10 $40 \frac{(10^{20} \text{ m}^{-3})}{(10^{20} \text{ m}^{-3})}$ (eV) 20 160 q_{target} (MW/m²) 15 30 120 P_{out} = 10 500 MW ²⁰ 80 detached 5 40 10 0 Λ 0 MW/m³ 100 <u>2</u>U τu 100 90 80 70 60 50 40 30 20 15 30 120 320 MW 20 10 80 detached 40 10 5 0 0 0.05 -0.05 0.1 015 0 0.2 -0.05 0 0.05 0.1 0.15 0.2 distance from strike point (m) distance from strike point (m)

Divertor operation (< 10MWm⁻²) is expected at f_{rad} > 80%

Radiation region moves near target with reduction from $f_{rad} = 92\%$ ($P_{rad}^{tot} = 295$ MW) to 80% (256MW), where nearly full-detached plasma becomes partially-detached. \Rightarrow Peak heat load increases from 6 to 10 MW/m².

Lower f_{rad} < 80% seems to be difficult in the SlimCS-size divertor. Studies in 2014:

- Impurity (Ne/Ar/Kr) seeding and long-leg option will be compared to P_{fus} = 3GW.
- Divertor operation in similar geometry for New concept design ($R_p \sim 8m$)

Divertor simulation of new design: $R_p \sim 8m$, $P_{out} = 320$ MW

SONIC simulation of the divertor plasma in the new Demo design with reduced P_{fus}: large radiation loss case (f_{rad}=92%) showed that full detached was enhanced. ⇒ thermal instability of the divertor plasma occurs.

Calculations of lower radiation cases (f_{rad} = 70-85%) are now in progress.

3.日欧共同研究

Comparison DSMC and NEUT2D for subdivertor gas flows in JT60-SA Kick-off meeting at JET on 22/3/2014

C. Gleason-González, S. Varoutis, K. Hoshino, H. Utoh, N. Asakura, T. Nakano Boundary conditions defined and given:

2nd meeting (remote) on 8/5/2014

- C. Gleason-González, S. Varoutis, K. Hoshino,
- K. Shimizu, S.Sakurai, N. Asakura, T. Nakano
- 1st output from DSMC code:

Some difference found

The boundary conditions are being checked

Simplified calculation model was suggested

JET modelling by SONIC

デタッチメントモデリングの改善を目標に、今年からコード間ベンチマークを再開 (cf. ITPA DSOL mtg. 2009)

すでにSOLPSやEDGE2Dで解析の進んでいるJET-ILWを対象に、 SONICシミュレーションに着手

まとめ

1. 国際的進展

実験データを補完的に用いた解析が精力的に進められている。実験データの 再現性は高くなってきているが、unconventional assumptionによるところが大 きいと思われ、今後モデリングが必要。

2. 国内活動

原型炉ダイバータとしては、原型炉仕様の再検討を受け、パラメータサーベイを開始。課題はあるものの2GW P_{rad}/P_{out}=92%で現状の工学設計と取り合いができる可能性が見えてきた。

JT-60SAの解析については、燃料・不純物ガスの組み合わせを変えたような パラメータサーベイが進行中。またW壁の解析も始められている。

3. 日欧共同研究

サブダイバータの中性粒子輸送、デタッチメントモデル改善に向けたコード間 ベンチマークが進行中