動画に関してはご相談ください

PWIモデリングの現状と課題

伊藤 篤史 Atsushi M. Ito ito.atsushi@nifs.ac.jp

核融合科学研究所

謝辞

平成23-25年度自然科学研究機構「若手研究者による分野間連携研究プロジェクト」 中村浩章,高山有道,小田泰丈,時谷政行(核融合研),

大野哲靖, 梶田信, 矢嶋美幸,野杁泰幸(名大),

尾形修司,田村友幸,小林亮,服部達徳(名工大),

吉本芳英(鳥取大),村島隆浩(東北大),奥村久士(分子研),小谷隆行(天文台), 和田元,剣持貴弘(同志社大),松尾太郎(京大),西浦正樹(東大), 斎藤誠紀(釧路高専),高村秀一(愛工大),宮本光貴(島根大),吉田直亮(九大)

PWIモデリングの現状と課題

材料寄りのPWIモデリング

→ 分子動力学(MD)は役者不足 → 他のシミュレーションとの連携が重要

- 1. "タングステンの繊維状ナノ構造形成過程"に例を 見るMDと他のシミュレーションの連携
- 2. MD視点で見たPWIモデリングの将来と課題

1. "タングステンの繊維状ナノ構造形成過程"に例を 見るMDと他のシミュレーションの連携

2. 将来へ向けたさらなるMDの拡張

繊維状ナノ構造の成長の様子

• 泡構造(ヘリウムバブル)ができた後、繊維状の構造が生える

*S. Kajita, et al., Nucl. Fusion. 49 (2009) 095005.

S. Kajita, et al., J.Nucl.Mater.418(2011)152-158.

繊維状ナノ構造形成における四段階過程

1. penetration proc.: Energy window for penetration

- Lower limit of He penetration by DFT[2] well agrees with that measured by NAGDIS[1].
- Energy windows for Ne and Ar are much smaller, relate to Yajima's experiment[M. Yajima, etal, Plasma Sci. & Tech., 15 (2013) 282,]

[1] lower limit measured by experiment with NAGDIS:
 D. Nishijima, M.Y. Ye, N. Ohno and S. Takamura: J. Nucl. Mater. 313-316, 97 (2003), 329-333, 1029 (2004) Proc. 30th EPS ECA 27A (2003) 2, 163.

[2] lower limit as the solution energy calculated by DFT(QMAS)

T. Tamura, R. Kobayashi, S. Ogata, A. M. Ito, Model. Sim. Mater. Sci. Eng., 22 (2014) 015002.

[3] higher limit as the sputtering threshold energy calculated by BCA($AC \forall T$)

S. Saito, etal, J. Nucl. Mater. 438, (2013) S895–S898.

単空孔中のヘリウム凝集

タングステン単空孔中の13Heの凝集構造

タングステン空孔中の12Hの凝集構造

2nd step Nobel Gas Agglomeration is Unlimited

The binding energies of He atoms in a mono-vacancy calculated by OpenMX code based on density functional calculation (DFT).

- Binding energy of Helium in tungsten is always positive.
 - \rightarrow Helium agglomeration is advanced.
 - \rightarrow Hydrogen agglomeration is stepped.
- Helium can agglomerated in also many kinds of metallic materials.

2nd process Helium can agglomerates without vacancy

• Helium agglomeration is advanced even if it is located at interstitial site

Binding energy of He at tungsten interstitial site

T. Tamura et.al.*

The electron density lower than bulk

- Noble gas cluster generates the region in which is lower than that of pure bulk material. The region becomes new stable site for the next noble gas atoms.
- T. Tamura, R. Kobayashi, S. Ogata, A. M. Ito, Model. Sim. Mater. Sci. Eng., 22 (2014) 015002..

He diffusion is accelerated by clustering

- The migration barrier of helium atom is smaller than that of hydrogen.
- The migration barrier of helium dimer becomes one third of single atom.

T. Tamura, R. Kobayashi, S. Ogata, A. M. Ito, Model. Sim. Mater. Sci. Eng., 22 (2014) 015002..

ヘリウムバブルの形成シミュレーション(MD)

MDでの仮想実験:空孔が無くてもヘリウムバブルの凝集が可能

He:5%, 空孔:1% 混入

He:5%混入,空孔なし

ヘリウムバブル成長を支配するミクロの機構

- 1. 空孔He捕獲
 - ✓ He-空孔結合エネルギー: 2-3 eV/ He atom^[1]
 - ✓ 空孔中のHe拡散障壁エネルギー: ~6 eV/ He atom[Y. Oda]
 - →「凝集と拡散阻害の競争」
- 2. 格子間凝集
 - ✓ 格子間凝集エネルギー:1-2 eV/ He atom^[2,3]
 - ✓ 格子間拡散: Heクラスタ > He単原子 [T.Tamura, PSI21]
 - →「凝集による拡散の加速」

[1] A. Takayama, et al., JJAP 52(2013) 01AL03,

[2] C.S. Becquart, S. Domain PRL97(2006) 196402,

[3] T.Tamura, et al., Modelling Simul. Mater. Sci. Eng. 22 (2014) 015002.

シミュレーションで得られたループパンチング

これまでの繊維状ナノ構造の成長モデル

(1) S I Krasheninnikov Phys. Scr. T145 (2011) 014040

Figure 2. Schematic views of the (a) initial stage of the fiber growth, (b) developed fiber, (c) viscose flow of W to the tip of the fiber due to the force caused by the pressure of He in the growing fiber.

Krasheninnikovモデルでは再現できない

(2) S. Kajita, et al., J.Nucl.Mater.418(2011) 152-158. Surf. temp.:1400 K, Ion energy: 50 eV Original surface <1x10²⁵ He⁺/m² (b) ~1x10²⁵ He⁺/m² (c) 0 0.0 0 ~2x10²⁵ He⁺/m² (d)

>2x10²⁵ He⁺/m²

既存のシミュレーション手法の限界

分子動力学法(MD)

- 原子の動きを正確に計算
- 短い時間しか再現できない

× ヘリウムの拡散

○ タングステンの歪みや変形

モンテカルロ法(MC)

- 原子の動は簡略化して計算
- 長い時間を再現できる

○ ヘリウムの拡散
 × タングステンの歪みや変形

MD-MCハイブリッドシミュレーション

- モンテカルロ法(MC)でヘリウムの拡散を計算してから、 分子動力学法(MD)で全体の形状変化を計算
- これを繰り返す

繊維状ナノ構造形成のMD-MCハイブリッドシミュレーション

46.2 nm

繊維状ナノ構造形成のMD-MCハイブリッドシミュレーション

The present simulation system under psudo-3D space

Full 3D simulation will be shown as soon!

The present simulation system is three dimensional, but the side in y-direction is thin. The reason of that is just only to reduce calculation time to do many try & error.

繊維状ナノ構造形成の鍵となるメカニズム

成長の鍵となるメカニズム

- ヘリウムバブルの表面破裂
- めくれ上がった形状を維持できるタン グステンの強度
- 本当に再現できたのか?
- まだまだ初期段階まで
- 見た目以外の判定
 - → フラクタル次元解析[Kajita et al.*]

Kajita et al., Physics Letters A 378 (2014) 2533–2538.

*S. Kajita, et.al. APEX 3(2010) 085204

Comparable formation time scale as helium fluence

MD-MC doped He amount: 4.8 x 10²¹[m⁻²] Un-trea

Experimental fluence: 10²⁴~10²⁵[m⁻²]

⁻ <u>Un-treated processes in MD-MC:</u>

80% of helium are reflected by the surface in penetration process.

By ejection from the surface in diffusion process, only 1-2% of helium atoms are retained, which are agreement between experiment* and kinetic MC.

*H.T. Lee et.al., Trans. Fusion Sci. & Tech. 63 (2013) 233

Dependence on penetration depth is confirmed

- Although penetration depth is nano-meter, which is estimated by BCA simulation, the difference of penetration depth in nano-meter is effective to fuzzy nanostructure formation in the MC-MD hybrid simulation.
- We now research the relation between the incident energy threshold to generate fuzzy nano-structure* and this dependence on penetration depth.

*S. Kajita, et al., Nucl. Fusion. 49 (2009) 095005

Comparison among penetration depth D at the doped He amount of 2.4 x 10^{21} m⁻²

タングステン材料とヘリウムプラズマの相互作用

ヘリウムはタングステン内部でバブル(気泡)を形成できる

希ガスが凝集しタングステンを押し広げることで電子密度を下げ、自らの受ける床力を下げるため

ヘリウムプラズマ照射で繊維状ナノ構造が生える

- ヘリウムの泡の力が引き起こす金属の変形
- 変形後のナノ形状を維持できるタングステンの強度

繊維状ナノ構造研究の意義

- ダイバーター板の耐久性の重要課題
- 科学的な興味深さ:他分野からの技術流入、人材流入
- 新材料としての応用:新規触媒材料、光吸収材料など

1. "タングステンの繊維状ナノ構造形成過程"に例を 見るMDと他のシミュレーションの連携

2. MD視点で見たPWIモデリングの将来と課題

◆相互作用ポテンシャル

- 精度: 0.1 eV/atom ~ 1000K ~ 0.1 Gpa
- 全ての元素のモデルが整備されていない

ミクロなモデルとの連携が必要

◆時間・空間スケール

• 0.1 μm, 10 nm (10⁸ atoms, 10⁸ steps)

マクロなモデルとの連携が必要

タングステン系ポテンシャルモデル

• DFT(量子計算)の結果を利用してMDポテンシャルを開発

主なタングステン系ポテンシャル

- Ackland–Finnis–Sinclair (AFS)
 potential (1987), レガシーモデル
- Juslin-Nordlund (2005), EU
- ➤ Juslin-Wirth(2013), US
- ➢ Li-Lu (2012) , 中国
- ▶ Ito (2013), 日本 **PWI-MD**
- PWI分野からMD一般へ貢献
- 各グループがDFTを採用したため、開発が楽になった。
- ・ 炭素時代には進まなかった。

ポテンシャルモデル開発の方針

案1)タングステンを母材とし、不純物元素の拡張

- 案2)に比べて容易
- タングステン材料の研究だけなら十分
- 具体的課題の計算に注力できる

案2)ユニバーサルモデル(全元素)を目指す

- タングステン以外の元素も母材にできる
- 難しい(理論屋にとってはモチベーションとなる)
- 具体的課題の計算に注力しにくい(人手の問題)

ポテンシャルモデル開発の方針

案1)タングステンを母材とし、不純物元素の拡張

- 案2)に比べて容易
- タングステン材料の研究だけなら十分
- 具体的課題の計算に注力できる

案2)ユニバーサルモデル(全元素)を目指す

- タングステン以外の元素も母材にできる
- 難しい(理論屋にとってはモチベーションとなる)
- 具体的課題の計算に注力しにくい(人手の問題)

ポテンシャルモデル開発方法の概念

マクロとの対応

ハイブリッドシミュレーションによる弱点の補い

BCA-MD

- 高エネルギー: BCA
- 低エネルギー:MD

MD-MC

- 材料変形:MD
- He拡散:MC

MD-FDTD

- 材料:MD
- ・ レーザー:FDTD

マクロなモデルへの物性値提供

表面溶融

• 粘性係数,自己拡散係数,表面張力→ CFD解析

SOL/Divertorプラズマ

- スパッタ率、反射率など
- 粒子の電離の問題

構造材料

• 粒界効果を含めたマクロな物性値を見積もれるか

特定トリチウム時代(~2009)のPWIシミュレーション

J. Plasma Fusion Res. Vol.86, No.12 (2010) 679-680

小特集 周辺プラズマからプラズマ対向壁材料までのシミュレーションコード・モデルの最前線 Recent Progress of Simulation and Modeling in SOL/Divertor Plasma and Plasma Facing Material

í		周辺領域					Ύ)
コアプラズマ領域	エーアラビア頁比	周辺プラズマ		壁材料			
		プラズマ (流体方程式) SOLDOR [*] B2	中性粒子 (粒子軌道追跡 /原子分子過程) SONIC* NEUT2D* LPS EIRENE	不純物輸送 (粒子軌道追跡 /原子分子過程) ■ IMPMC [*] ■ IMPGYRO [*] ■ ERO	物理散乱 (二体散乱近似) ACAT/AC∀T* 水素拡散 (拡散方程式) DIFFUSE* EDDY* SDTrimSP	化学損耗・堆積 (分子動力学) 共有結合(REBO) C-H(2002) ・C-H(1990) ・W-H 分子間力 黒鉛層間力*	ブランケット領域

特定トリチウム時代(~2009)のPWIシミュレーション

小特集執筆者紹介 \sim

が藤篤史

2009年3月名古屋大学大学院理学研究科博士後期課 程修了.博士(理学).核融合科学研究所助教.専門 は材料の分子動力学シミュレーション.最近の趣味 は城・神社めぐり.おみくじを引いて研究の調子を 占っています.私の場合、大吉かどうかよりも、「勝

負・争い事」の項目が研究の調子とリンクしているようで不思議. そ れにちなんで収集している「勝守り」は、神社の個性が表れるデザイ ンが多く面白い.四月に結婚予定.

⁽¹¹⁾ の かず お 星 野 一 生

日本原子力研究開発機構・核融合研究開発部門・先 進プラズマ研究開発ユニット,博士研究員.2008年 に慶應義塾大学大学院理工学研究科・後期博士課程 を修了(博士(工学)).周辺プラズマのモデリング, 特に重金属不純物の輸送過程のモデリングとダイ

バータコードを用いたモデリングを中心に行っています.8月に男の 子が生まれました.日々成長していく我が子の勢いに,喜びとともに 驚きを感じる毎日です.

とう ま みつ のり藤 間光徳

慶應義塾大学大学院理工学研究科基礎理工学専攻博 士課程.主な研究分野はトカマク周辺領域における 不純物を含んだプラズマ輸送解析.最近,栄養学を かじって本気でベジタリアンになろうとしたが挫折 し,肉が大好きな自分を発見した.仲良くなりたい

人とは焼肉屋に行くのが一番.バイリンガルになる夢は,研究・その 他に役立つので挫折しないように頑張るつもり.とりあえず日記を自 己流の英語で書き始め,2ヶ月程度続いている.

が む ざ し

核融合科学研究所,核融合理論シミュレーション研 究系,助教.2008年に京都大学工学研究科,原子核工 学専攻,博士後期課程を修了.研究分野は周辺ダイ バータプラズマおよび不純物のモデリングとシミュ レーションです.学生時代からのコンピュータと核

融合研に来てから始めたサイクリングが趣味で,もっと昔はピアノなんかも弾いていました.まわりの結婚・出産報告が気になる年頃になって,後に続きたいと決意を新たにしています.

診 診 哉 記

2009年3月愛知工業大学工学部卒業.現在,名古屋 大学工学研究科博士前期課程在学中.学部のころか らプラズマ壁相互作用の研究に従事.学部では実験 中心に研究を進めていたが,現在はシミュレーショ ンを主軸として研究を行っている.体力維持を目的

に夏はテニス,冬はスキーをやっている.

, 井 内 健 介

徳島大学大学院ソシオテクノサイエンス研究部先端 工学教育研究プロジェクト,助教.今年の5月から 転職し,東京エレクトロン㈱技術開発センター所属, 最先端基板洗浄技術開発に従事.今は実験やってま す.趣味は山梨,東京,京都,徳島の街を徘徊するこ

と. 行動範囲が広くなりました. 第二子誕生 (女の子).

PWIモデリングの現状と課題

MDだけでは勝負できない時代

 繊維状ナノ構造はDFT,KMCなど材料シミュレーションの導入・物性 分野との人材交流が進んだという意味で意義が高い

今後の課題

- 繊維状ナノ構造の次は何をやろうか
- シミュレーションの技術開発の方向性
- PWI(プラズマ側)との距離が開いてしまった