ITER full W Divertor Design and Progress of Technology R&D

Japan Fusion Energy Forum Sub-cluster MTG DIV-SOL +++, 29-30 Aug 2013, Iter china cu india japan korea russia usa Tsukuba Japan

Contributors

J. Gunn (CEA) A. Labusov (Energopul) P. Stangeby (Toronto Univ) S. Villari (ENEA)

JADA OVT PA team (JAEA) EUDA IVT PA team (F4E) RFDA HHF test PA team (NIIEFA)

Tungsten Divertor Task Force:

- V. Barabash
- S. Carpentier
- A. Durocher
- F. Escourbiac
- A. Fedosov
- L. Ferrand
- T. Hirai*
- T. Jokinen
- V. Komarov
- M. Kocan
- A. Kukushkin
- M. Lehnen
- M. Merola
- R. Mitteau
- R. A. Pitts
- W. Shu
- M. Sugihara

* TF leader

Japan Fusion Energy Forum Sub-cluster MTG DIV-SOL +++, 29-30 Aug 2013,

Divertor Cassette assembly

- 1. 54 Divertor Cassettes + 6 spare Cassettes
- 2. 3 Plasma-Facing Components (PFCs) on a cassette
- 3. Outer/Inner Vertical Targets, Dome (Umbrella and Reflector Plates)
- 4. Plasma-Facing Units (monoblock for VT PFUs and flat tile concept for Dome PFUs)
- 5. Plasma-facing Unit Attachments (plug and support leg)
- 6. Plasma-facing Component Attachments (Pin and multilink)
- 7. Divertor Cassette Attachments (Nose and Knuckle)

Background of Full-W Divertor Activity

New ITER divertor strategy

- From MAC-12 (Oct. 2011) [ITER_D_6SR5F7]: "[...] for budgeting purposes, the MAC supports the DG recommendation to de-scope to a single divertor during construction and initial five years of operation".[...] "As to the specific choice of divertor, MAC recommends delaying the decision for up to two years.
- These recommendations were adopted by the ITER Council during its ninth meeting in Nov. 2011 so that IO started to investigate the possibility of beginning operation with a full-W armoured divertor.

Extension of Lifetime

Japan Fusion Energy Forum Sub-cluster MTG DIV-SOL +++, 29-30 Aug 2013,

Ren china eu India japan korea russia usa Tsukuba Japan

Outline

1. Design constrain/input

- 2. Detailed divertor PFC Design
- **3. Design Validation**
- 4. Technology R&D requirements
- 5. Progress of technology R&D in EU and JA
- 6. Conclusion/Schedule

W Divertor Design – Requirements/ Input

Structural Design

- Load Specification for the ITER Divertor (C9RF33)
- Structural Design Criteria In-vessel Component (SDC-IC) (222QGL)

Plasma-Facing Unit Design

- Heat Load Specification for ITER Tungsten Divertor:
 - (1) Power density and number of cycles on the Vertical Target (7GFMB6)
 - (2) Poloidal conductive/convective surface heat loads (HDB7NZ)

Tolerances

- Assembly tolerances between Cassettes (20mm gap): step ±2 mm (Divertor Plasma Facing Surfaces Position and Shadowing Tolerances Build Up (764MGY), and margin)
- Assembly tolerances between two halves of VT PFCs (3mm gap) : step ±0.3 mm (in 2D drawings)
- Assembly tolerances between VT PFUs (0.5mm gap): step ±0.3 mm (in 2D drawings)

W Divertor Design: Design Constrains/ Assumptions

- Single coolant tube for a PFU to limit impact on CB design, diagnostics procurement, assembly plan, other interfaces (splitting target and baffle is not considered)
- 2. Dome design is retained as long as neutronics analysis confirms
- 3. Materials for Tungsten Divertor remain same except (a) exchange of CFC by W and (b) updated radioprotection requirements
- 4. Monoblock concept is retained
- 5. PFU attachment concept (PFU to the steel support structure) is retained.
- DW VDE (limiter configuration) contact only at OVT baffle according to the recent DINA analysis (ITER_D_765S86).

Thermal Event Impact at Plasma-Facing Surfaces

Outline

- 1. Design constrain/input
- 2. Detailed divertor PFC Design
- **3. Design Validation**
- 4. Technology R&D requirements
- 5. Progress of technology R&D in EU and JA
- 6. Conclusion/Schedule

Divertor Shaping Strategy

Objective:

To avoid melting due to leading edge exposure during steady-state and slow transient and to minimize the melting under off-normal events – **full edge-shadowing in high heat flux handling areas**

- **1. Tilting of each Divertor Plasma-Facing Component**
- 2. Toroidal-Roof-shaping and Outer Vertical Target chamfer
- 3. Monoblock toroidal chamfer

Tilting Scheme for OVT, IVT and Dome

IVT design – Monoblock toroidal chamfer at target

Cara china eu India Japan korea russia usa

mm deviation \rightarrow 0.5 mm toroidal monoblock chamfer

OVT design: PFC chamfer + monoblock chamfer

OVT design – Transition from target to baffle

- Transition: (1) monoblock thickness; (2) monoblock toroidal chamfer; (3) PFU profile
 - Monoblocks have simple chamfers at plasma facing side
 - Location of transition: away from the VDE impact area steady state loading area
 - Poloidal edge: exposed toward bottom direction

Japan Fusion Energy Forum Sub-cluster MTG DIV-SOL +++, 29-30 Aug 2013, Terra china eu india japan korea russia usa Tsukuba Japan

Manufacturing of W monoblock and PFU

W Monoblock

- Monoblocks consist of simple chamfer or double chamfer at plasma facing side (No complicated 3D profile)
- \rightarrow Monoblocks can be manufactured by conventional operations such as:
 - EDM wire cut operation (no need of milling)
 - Grinding operation
 - Conventional cleaning process

 \rightarrow Inspection i.e. dimension control, to be defined in NDT protocol

control, to be defined

• PFU

• OVT: only 5 variants

Reference OVT PFU R2 = R3-R10 = R13-R19; Toroidal roof shaping OVT PFUs R1=R12; R11=R20; R21; R22

• IVT: only 1 variant

Dome cooling structure and PFU attachment

Outline

- 1. Design constrain/input
- 2. Detailed divertor PFC Design
- **3. Design Validation**
- 4. Technology R&D requirements
- 5. Progress of technology R&D in EU and JA
- 6. Conclusion/Schedule

Design Validation by analysis

- 1. Neutronic analysis
- 2. Design Supporting analysis (thermo-mechanical and EM analysis)
- 3. Heat Load distribution Study PFC and monoblock level

Nuclear Analysis for ITER W Divertor

Model: Neutronic analysis by means of the latest ITER MCNP-5 Monte Carlo Code for 3D model (MCNP ITER 40° model B-lite v-2)

Assumption: 18% of the cumulated 3x10²⁷ neutrons (End of Life) during first divertor (up to end of the first full DT campaign)

Aim: Evaluate nuclear heating, radiation damage and helium production

Nuclear Analysis Results – damage (dpa)

Villari - Neutronic Analysis (ITER_D_HQZHC5)

Maximum dpa at ITER EOL (permanent)							
Component	W	Cu/CuCrZr	SS				
IVT PFU	0.51	2.37	7 1.28				
OVT PFU	0.54	2.50) 1.52				
Dome Umbrella PFU	0.48	2.1	1 1.31				
CB plate below Dome			0.14				
Maximum dpa after 4 years of ITER nuclear phase (first cassette)							
Component	W	Cu/CuCrZr	SS				
IVT PFU	0.089	0.41	0.22				
OVT PFU	0.095	0.44	0.27				
Dome Umbrella PFU	0.084	0.37	0.23				

Design supporting analysis

Input:

Defined Load combinations in Load Specification for the ITER Divertor (C9RF33)

Aim:

Validate structural integrity under the following loads and load combinations by FEM

- Inertial loads (associated with gravity and seismic events);
- Hydraulic pressure loads,
- Electromagnetic loads,
- Thermal loads (due to nuclear heating and surface heat fluxes), and
- Assembly loads (typically due to preloads imposed on the CB during assembly and preload of the bolts).

Design supporting analysis – Load Combinations

	Individual events in ITER tokamak		Additional loads specific to divertor	Category	Number of events ⁽¹⁾	
	Seism	Plasma ⁽³⁾	Magnet			
1		Testing regime		DW, Hydr. test pressure,	Test	1
					•	
2		Baking regime ⁽²⁾		Preload, DW, CP, TH	Ι	200 at 240 C 4.4 MPa 200 at 350 C at 1 MPa
3		Normal operation		Preload, DW, CP, TH	Ι	Only for thermal loads: 5000 for PFCs and CB @ 10 MW/m ² 300 for PFCs and CB @ 20 MW/m ² 30,000 for rails
4		SDVDE-II 50-100 ms		Preload, DW, CP, TH	II	150
5		FDVDE-II 36 ms		Preload, DW, CP, TH	II	150
6		MD-I 50 ms	MFD-II	Preload, DW, CP, TH	II	3000
7	SL-1 ⁽³⁾		MFD-II	Preload, DW, CP, TH	II	1
8		SDVDE-III (>200ms)		Preload, DW, CP, TH	III	1
9		FDVDE-III 36 ms		Preload, DW, CP, TH	III	1
10	SL-1 ⁽³⁾	SDVDE-II 50-100 ms	MFD-II	Preload, DW, CP, TH	III	1
11	SL-1 ⁽³⁾	FDVDE-II 36 ms	MFD-II	Preload, DW, CP, TH	III	1
12	SL-2 ⁽³⁾			Preload, DW, CP, TH	IV	1
13		SDVDE-IV slow-fast		Preload, DW, CP, TH	IV	1
14		"Rotating Asymmetric VDEs"		Preload, DW, CP, TH	IV	1
15	SL-2 ⁽³	Baking regime		Preload, DW, CP, TH	IV	1
16	SL-2 ⁽³	Maintenance		DW	IV	1

Load Specification for the ITER Divertor System (C9RF33)

Design Supporting Analysis Results

Stress intensity (MPa) at 2nd load combination: CB preload + DW+ CP + Temperature

- Primary stresses are within allowable limits for the analysed load cases (DW, Pressure test, Coolant pressure, EML)
- Cyclic strength criteria (no ratcheting) are satisfied for the SSS of the PFCs, Dome PFUs and CB.

Heat Load distribution study – PFC level

china eu india japan korea russia usa

Heat Load Distribution Analysis Results

Examin 5 (I_P, B_T) steady-states
 → No leading edges

15MA, 5.3T

 Examine Analysis of ~75 DINA time sequences → no leading edges

'DW VDE, init li = 0.6, 675 ms'

Wetted area at OVT surface With worst misalignment

Energy density at OVT surface With worst misalignment

- Demonstrates OVT shaping design could avoid leading edges

Japan Fusion Energy Forum Sub-cluster MTG DIV-SOL +++, 29-30 Aug 2013,china eu India Japan Korea russia usaTsukuba Japan

Heat Load distribution study – monoblock level

Monoblock (axial 12 mm; toroidal 28 mm) edges could be exposed to flux tubes penetrating through the monoblock gaps (nominal width 0.5 mm).

Input:

- Plasma configurations
- Heat load specification
- Max misalignment at gap
- Monoblock geometry

Tool:

1. PFCFLUX:

Field tracing analysis (optical)

2. Monte Carlo test particle simulation:

lons with random perpendicular velocities (Maxwellian distribution) in magnetic field

Aim:

Validate full edge shadowing at HHF area at monoblock level

Under final tuning: double chamfer

Outline

- 1. Design constrain/input
- 2. Detailed divertor PFC Design
- 3. Design Validation

4. Technology R&D requirements

- 5. Progress of technology R&D in EU and JA
- 6. Conclusion/Schedule

Full-W Divertor Qualification Program

2 steps in the program

- (1)Technology Development and Validation : Demonstration of the *fitness-for-purpose* of the proposed technology, full-W small-scale mockups manufacturing and High Heat Flux testing
- (2) Full-scale demonstration : Demonstration of the technology via fullscale-prototype PFU manufacturing and testing in IDTF; Compliance with IO procurement quality requirement

1st step: Technology Development and Validation

PFU attachment joint

(1) Uniaxial tensile test at RT (at least 5 samples; Load speed 20-60 N/s)
Acceptance Criteria: >8 kN for OVT and >10 kN for IVT (attachment/5monoblocks)
(2) Cyclic zero-pull fatigue test at RT cycle number 15k cycles (<1 Hz) 0-8 kN (0-10kN) OVT (IVT) PFU leg (attachment/5monoblocks)
Acceptance Criteria: deformation along the loading axis < 0.3 mm

W monoblock

oint

PFU support ler

• W monoblock armor to heat sink joint HHF test 5000 cycles at 10 MW/m² and 300 cycles at 20 MW/m²

Acceptance Criteria: No trace of substantial melting by Visual Inspection / No water leak / No detachment of any armour block / No appearance of any "hot spot" during fatigue cycling / no variation of max T_{surf} (°C) exceeding 20% increase between initial and final thermal mapping

2nd step: Full-scale demonstration

Tube to tube joint qualification

(1) Welding qualification test in accordance to EN ISO 15614-1
Acceptance Criteria: Quality class B as defined in EN ISO 5817 or EN ISO 13919-1, and ITER Vacuum Handbook Attachment-1
(2) He leak test after rotary bending fatigue test 0.1% strain,10k cycles (<1Hz) at RT Acceptance Criteria: He leak rate ≤ 10⁻¹⁰ Pa m³/s
(3) Tensile test at 150°C
Acceptance Criteria: > 200 MPa

PFU W monoblock armor to heat sink joint

- HHF test 5000 cycles at 10 MW/m² and 300 cycles at 20 MW/m² at straight part
- HHF test 5000 cycles at 5 MW/m² at curved part

Acceptance Criteria: No trace of substantial melting by Visual Inspection / No water leak / No detachment of any armour block / No appearance of any "hot spot" during fatigue cycling / no variation of max T_{surf} (°C) exceeding 20% increase between initial and final thermal mapping

Compliance with ITER Procurement Quality Requirements

ITER Divertor Test Facility (IDTF)

IDTF that commissioned in frame of Divertor PA

- Built within Procurement Arrangement 17P2D
- Location: Efremov Institute, St-Petersburg, RF
- Electron beam test facility
- Maximum electron beam power: 800 kW
- Maximum accelerating voltage: 60kV
- Cooling water parameters are ITER divertor relevant
- Dedicated system of diagnostics

Copper mask (to limit heated area) Japan Fusion Energy Forum Sub-cluster MTG DIV-SOL +++, 29-30 Aug 2013, **Tsukuba Japan** china eu india japan korea russia usa

Task Agreements to support technology R&D

- Objectives:
 - Deliver results of technology validation timely for the decision of the armour material (end 2013)
 - Support demonstration by the full-scale prototypes activities
- 3 TAs with DAs
 - With JA DA: for the manufacturing of OVT small-scale mock-ups and full-scale prototype PFUs
 - With EU DA: for the manufacturing of IVT small-scale mock-ups (full-W full-scale PFU manufacturing already planned in the PA for IVT)
 - With RF DA: for the HHF testing of the above component s at the ITER Divertor Test Facility (IDTF)

Outline

- 1. Design constrain/input
- 2. Detailed divertor PFC Design
- **3. Design Validation**
- 4. Technology R&D requirements
- 5. Progress of technology R&D in EU and JA
- 6. Conclusion/Schedule

EU HHF Test Results 2009-2011

HHF tests were performed on the FE200 facility at AREVA. Tungsten monoblock mock-ups armouring CuCrZr cooling pipes were successfully tested up to 15 MW/m² for 1000 cycles and 20 MW/m² for 300 cycles [1].

Table summarizes the main results on the tested tungsten mock-ups [2]

1000 cycles at 10 MW/m ²	1000 cycles at 15 MW/m ²	300 cycles at 20 MW/m ²
No significant visible effect	Surface modification but no melting trace	Self-castellation ; No debonding of tile ; no substantial melting

Results fulfil the IO acceptance criteria, and indicate that W monoblock technology is acceptable for the requirements of the full-W vertical target

[1] P. Gavila et al, Fus. Eng. & Des. 86 (2011) 1652-1655 [2] P. Lorenzetto et al, 24th IAEA-FEC 2012

EU HHF test results in 2013

EU DA campaign: on 12 mock-ups in IDTF in RF

HHF Testing program:

- step 1 : 5000 cycles at 10 MW/m²
- step 2 : 300 (+700 cycles) at 20 MW/m²
- step 3 : critical heat flux

HHF results @ 20MW/m² obtained on first set of 6 mock-ups.

- No traces of melting on the loaded surface
- Cracking development

with 6 mm of W thickness

Plansee 20MW/m² after 75 cycles

with 7.5 mm of W thickness

Second set of HHF testina program with 6mm of W thickness was recently stopped.

Self-castellation was observed

Japan Fusion Energy Forum Sub-cluster MTG DIV-SOL +++, 29-30 Aug 2013, Tera china eu india japan korea russia usa 🕴 Tsukuba Japan

2

JA HHF results in 2012

JA DA campaign: OVT CFC/W Full-Scale PFUs

Straight W part of PFUs subjected to the HHF tests -- 5000 cycles at 10 MW/m² and

1000 cycles at 20 *MW/m*²

20 monoblocks of 12mm (axial) x 28mm (poloidal) x 7.5 mm (W thickness at the top of the tube).

Results fulfil the IO acceptance criteria, and indicate that W monoblock technology is acceptable for the requirements of the full-W vertical target

Small scale mockups will be tested in IDFT 24-26 Sep 2013

Effects of Irradiation on Performance

The effects of irradiation on the performance of the W monoblock have been assessed by experiments – PARIDE 3 and PARIDE 4 [4].

High Flux Reactor Petten, Netherlands

Neutron-Irradiation campaign:

PARIDE 3: 0.1 dpa at 200 °C // PARIDE 4: 0.6 dpa at 200 °C

Irradiated W mock-ups (0.6 dpa at 200°C) sustained thermal fatigue testing at 18 MW/m² for 1000 cycles

Post irradiation testing of samples from the irradiation experiments PARIDE 3 and PARIDE 4, M. Roedig et al., JNM 329–333 (2004) 766–770

Japan Fusion Energy Forum Sub-cluster MTG DIV-SOL +++, 29-30 Aug 2013, TCI china eu india japan korea russia usa 🕴 Tsukuba Japan

Outline

- 1. Design constrain/input
- 2. Detailed divertor PFC Design
- **3. Design Validation**
- 4. Technology R&D requirements
- 5. Progress of technology R&D in EU and JA
- 6. Conclusion/Schedule

Schedule for full-W Divertor Decision

- Final Design Review of Tungsten Divertor (26-28 June 2013)
 - ✓ Full-W Divertor design
 - ✓ Full-W Divertor technology qualification programme
- Physics Assessment
 - ✓ Report from ITPA Topical Groups to STAC-14 (May 2013) giving a physics/operational opinion on a full-W divertor start for ITER
 - ✓ JET misaligned lamella melt experiment: summer 2013
- STAC-15 (Oct 2013) to take note of the Design and Physics outcome and provide recommendation
- ITER Council-13 (Nov 2013) to endorse the STAC/ MAC recommendation on this topic
- Implementation of the decision into the baseline via a PCR (end-2013, SMP.0116.001032 milestone) if selected

Thank you very much for your attention

