水素・ヘリウムの衝突輻射モデルと中性粒子輸送コードの開発

信州大学工学部 澤田圭司

平成25年度合同会合: 第1回プラズマ物理クラスター・スクレープオフ層とダイバータサブクラスター 第3回炉工学クラスター・ブランケットサブクラスター 第1回炉工学クラスター・ダイバータサブクラスター 筑波大学プラズマ研究センターシンポジューム 双方向型共同研究「磁化プラズマ中の壁不純物粒子挙動とプラズマ特性への影響」 平成25年8月29日(木)8:50~17:50 30日(金) 9:00~17:10 つくばサイエンスインフォメーションセンター大会議室

Introduction : Our models

Collisional–Radiative Models

Hydrogen atom Hydrogen molecule (H₂) Helium atom (M. Goto)

Neutral-Transport Code

LHD 中性粒子輸送コードの計算結果

Introduction : Our models

Collisional–Radiative Models

Hydrogen atom Hydrogen molecule (H₂) Helium atom (M. Goto)

Neutral-Transport Code

H Collisional-Radiative Model

Solving Rate equations

Effective Ionization and Recombination Rate coefficients

SCR Effective Ionization Rate Coefficient

CR Effective Recombination Rate Coefficient

$$\frac{dn(1)}{dt} = -S_{\rm CR} n(1)n_e + \alpha_{\rm CR} n_{\rm H^+} n_e$$

Ionizing component $T_e = 10eV n_e = 10^{10}cm^{-3}$ n(1)=1cm⁻³

Recombining component

 $T_e = 0.1 eV n_e = 10^{12} cm^{-3} n_i = 1 cm^{-3}$

$H_2 + e -> H + H(p) + e$

Collisional-Radiative Model : Inclusion of H₂ + e -> H + H(p) + e

$$\frac{dn(p)}{dt} = \sum_{q < p} C(q, p) n_e n(q) + \sum_{q > p} \{F(q, p) n_e + A(q, p)\} n(q) + \alpha(p) n_e^2 n_i + \beta(p) n_e n_i$$

$$-[\{\sum_{q < p} F(p,q) + \sum_{q > p} C(p,q) + S(p)\}n_e + \sum_{q < p} A(p,q)]n(p)$$

 $+ C_{H2}(p)n_{H2}n_{e}$

$$p \ge 2$$

$$\frac{d}{dt}\begin{pmatrix} \cdot \\ \cdot \\ n(3) \\ n(2) \end{pmatrix} = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & n(3) \\ (12) \end{pmatrix} + \begin{pmatrix} \cdot \\ n(3) \\ n(2) \end{pmatrix} + \begin{pmatrix} \cdot \\ n(3) \\ n(2) \end{pmatrix} n_{e} + \beta(3) \\ (2)n_{e} + \beta(2) \end{pmatrix} n_{i}n_{e} + \begin{pmatrix} \cdot \\ \cdot \\ C(1,3) \\ C(1,2) \end{pmatrix} n(1)n_{e} + \begin{pmatrix} \cdot \\ \cdot \\ CH_{2}(3) \\ CH_{2}(2) \end{pmatrix} n_{H_{2}}n_{e}$$

$$n(p) = \frac{R_{0}(p)n_{i}n_{e}}{Recombining} + \frac{R_{1}(p)n(1)n_{e}}{Recombining} + \frac{R_{2}(p)n_{H_{2}}n_{e}}{Rew term}$$

MAR (Molecular Assisted Recombination)

 $n(p) = R_0(p)n_e n_{H^+} + R_1(p)n_e n_H + R_2(p)n_e n_{H_2} + R_{MAR}(p)n_e n_{H_2}$

輻射輸送

ライマン線吸収長

Plasma

 $1/ \kappa(v_0)$ (cm)

H Collisional-Radiative Model

輻射輸送の計算手法

(1) 空間を微小セルに分割し、各場所に

- ・原子スペクトルプロファイル $g(\nu)$:中性粒子輸送コード水素原子温度(ドップラー広がり) ・基底状態原子密度n(1):中性粒子輸送コード
- ·電子密度n。
- ·電子温度T。

を与える。

- (2) 初めに輻射輸送を考慮せず、 各場所の励起準位ポピュレーションを 衝突輻射モデルにより計算する。
- (3) (2)の励起準位ポピュレーションから
 各場所の光の放出と吸収を計算し、
 光強度の空間分布を計算する。
- (4) (3)の光強度を用いて、光吸収を考慮して 各場所の励起準位ポピュレーションを 計算する。

中性粒子輸送コード計算結果 水素原子・分子密度 & 水素原子温度

輻射輸送計算 RFプラズマ

輻射輸送の簡単な計算例 計算条件

$$T_{\rm e} = 1 \text{ eV}$$

 $n_{\rm e} = n_{\rm H^+} = 10^{21} \text{ m}^{-3}$
 $n(1) = 10^{20} \text{ m}^{-3}$
 $T_{\rm H} = 1 \text{ eV}$

輻射輸送を考慮しない場合

The excitation and de-excitation flow of ionizing plasma component. The figures denote the quantities of the fluxes. For example, 0.133E24 denotes $0.133 \times 10^{24} [m^{-3} s^{-1}]$. The solid line denotes the transition by electron collision, and the broken line denotes the spontaneous radiative transition.

0

The excitation and de-excitation flow of recombining plasma component. The figures denote the quantities of the fluxes. For example, 0.347E25 denotes $0.347 \times 10^{25} [m^{-3} s^{-1}]$. The solid line denotes the transition by electron collision, and the broken line denotes the spontaneous radiative transition.

ポピュレーション

光の減衰長

Plasma

 L_{α} spectrum at the center z = 0m of the slab which is achieved after convergence. The closed circles and the open squares denote results for $R_{LIMIT} = 4.0 \times 10^{-2}$ m and $R_{LIMIT} = 8.0 \times 10^{-2}$ m, respectively. The emission line profile of the Doppler broadening $g(\nu)$ is also shown. The line of "BLACK BODY" is a reference value which is calculated assuming a uniform infinite volume plasma whose population density is the same as that at z = 0m.

輻射輸送の計算

収束の様子

The $\rho_{total}(\nu_0)$ of L_{α} at the center z = 0m of the slab is shown as a function of the number of iterations.

 L_{α} spectrum at the center z = 0m of the slab which is achieved after convergence. The closed circles and the open squares denote results for $R_{LIMIT} = 4.0 \times 10^{-2}$ m and $R_{LIMIT} = 8.0 \times 10^{-2}$ m, respectively. The emission line profile of the Doppler broadening $g(\nu)$ is also shown. The line of "BLACK BODY" is a reference value which is calculated assuming a uniform infinite volume plasma whose population density is the same as that at z = 0m.

輻射輸送の計算

収束の様子

輻射輸送を考慮した場合

The excitation and de-excitation flow ionizing plasma component at the center z = 0m of the slab. The thick solid line (red) denotes the absorption of photon. The thin solid line denotes the transition by electron collision, and the broken line denotes the spontaneous radiative transition.

The excitation and de-excitation flow of recombining plasma component. The figures denote the quantities of the fluxes. For example, 0.347E25 denotes $0.347 \times 10^{25} [m^{-3} s^{-1}]$. The solid line denotes the transition by electron collision, and the broken line denotes the spontaneous radiative transition.

原型炉SlimCSでの輻射輸送の計算

H₂衝突輻射モデル

H2 Collisional-Radiative Model (ver.1) Calculation of effective reaction rate coefficients

XK. Sawada, K. Eriguchi, T. Fujimoto:

Hydrogen-atom spectroscopy of the ionizing plasma containing molecular hydrogen: line intensities and ionization rate; J. Appl. Phys. 73, 8122-8125, 1993.

K. Sawada, T. Fujimoto:
 Effective ionization and dissociation rate coefficients of molecular hydrogen in plasma; J. Appl. Phys. 78, 2913–2924, 1995.

H2 Collisional-Radiative Model (ver.2)

Vibrational levels for n<=2 electronic state are considered.

₭K. Sawada and T. Fujimoto:

Effect of initial vibrational excitation of molecular hydrogen on molecular assisted recombination in divertor plasmas;

Contrib. Plasma Phys. 42, 603-607, 2002.

速度分布の計算例 H₂(X) → H₂(b) → H + H

Construction of electronically and rovibrationally state-resolved collisional-radiative model of molecular hydrogen

H₂ energy levels

Hund's case (b) $\int_{N}^{N} (K) R(N)$

Thanks to Professor C. JUNGEN

 $EF^{1}\Sigma_{g}^{+}, GK^{1}\Sigma_{g}^{+}, H^{1}\Sigma_{g}^{+}, B^{1}\Sigma_{u}^{+}, C^{1}\Pi_{u}, B^{1}\Sigma_{u}^{+}, D^{1}\Pi_{u}, I^{1}\Pi_{g}, J^{1}\Delta_{g}$

D.Bailly et al., Molecular Physics 108, 827, (2010)

others

The Hydrogen Molecule Wavelength Tables of GERHARD HEINRICH DIEKE,

Edited by H. M. Crosswhite,

John Wiley & Sons Inc (1972)

Triplet : - 149.6 cm⁻¹

n < 7

4133 levels are included in H₂ CR model.

$H_2(X) + e -> H_2^* + e$

R.K.Janev, D.Reiter, U.Samm,

Collision Processes in Low-Temperature Hydrogen Plasmas,

http://www.eirene.de/report_4105.pdf

W.T. Miles, R. Thompson, and A.E.S. Green, J. Appl. Phys. 43, 678 (1972).

Born-Bethe approximation modified at low energies by phenomenological techniques

All cross sections are given for n<=4.

RF plasma

Wavelength (nm)

8

Determination of ne, Te, Tv, Trot from observed spectra

H₂ CR model calculation : H₂ spectra

580-600 nm red (exp.) blue (calc.)

$\begin{array}{c c} cens i ty (mi croW/cm^2/2) \\ \hline c c c c c c c c c c c c c c c c c c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 - c- 1 3 i+ 2 1 - c- 2
580. 0	. <u>+</u> . <u>+</u> . <u></u> 585. 0	590.0	.± ± 595.0	600. 0

600-620 nm red (exp.) blue (calc.)

8. 76E 1	0 1 - a 0 1	0 2 - a 0 2	03-a 03	04-a04		1 1 - c+ 1 2	2 2 - c- 2 3		1 1 - a 1 0		1 2 - a 1 2	3 1 - c+ 3 2		24-a23	1 1 - a 1 2			12-a 13
/cm^2/nm)	-a 6 1 - 1 d-	-p -	– c+ 2 2 d–	2 - 6+ 2 3 d-	t - a 1 3	3 - a 1 2	<u> </u>	ء د د	α α α +	+ + 	- - -	3 - a 1 3 i+	- - -	φ+	3 - a 2 2 _{d+}		2 - a 2 1	+
y (microW,	d- 7 1 و 2 م	6 3 ⁸ -	1 1 i+ 2 1	i+ 2 2	+ 2 4 d+ 1 4	0 2 d+ 1 3		-	- 3 1 4+ 0	• • •	0 4	d- 1	1 4 e 4	, , , , , , , , , , , , , , , , , , ,	d+ 2	33	d+ 2 2	
Intensit	d 7 2 8	d- 7 3 - a	e 4 2 - a		i+ 2 3 - c	d+ 0 1 - a	יים דייס דייס	5 	i+ ;+ ;		d+ 0 3 - a		d- 1 4 - a	0 4 - 3	5 5	i- 3 2 - c		
~	\sim	NA			n		had						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A				
600.0		<u></u>		6(05.0			Wavele	610.0 ength	(nm)			615	. 0			· · · · · · · · · · · · · · · · · · ·	620.0

620-640 nm red (exp.) blue (calc.)

400-420 nm red (exp.) blue (calc.)

H₂ Transition Probability to Continuum states

400-420 nm red (exp.) blue (calc.)

Our models

Collisional–Radiative Models

Hydrogen atom Hydrogen molecule (H₂) Helium atom (Dr. Goto)

Neutral-Transport Code

