プラズマガンを用いたELM様パルス プラズマのタングステン材への照射実験

菊池 祐介, 岩本 大希, 佐久間 一行, 北川 賢伸, 福本 直之, 永田 正義

兵庫県立大学 大学院 工学研究科 電気系工学専攻

発表概要

1. 研究の背景

2. 磁化プラズマガン(兵庫県立大学)

3. タングステンへ(W)のパルスプラズマ照射実験 ・定常予照射Wサンプルへの照射 ・W-Ta合金材、Wコーティング材への照射

4. 今後の研究計画

ITERダイバータにおける高熱流プラズマ模擬実験

パルス熱負荷実験に関する共同研究

磁化同軸プラズマガン@兵庫県立大学

Magnetized Coaxial Plasma Gun (MCPG)

- ポロイダル電流とトロイダル電流を有するコンパクトトーラス(Compact Torus: CT) プラズマが形成される。
- 高速(~ 300 km/s)で移送可能

磁化同軸プラズマガン@兵庫県立大学

(1) 高密度コンデンサの使用(最大電源エネルギー:10 kV, 2.9 mF, 144 kJ)
(2) テーパー付きドリフト管によるプラズマの高密度化
(3) 内部電極(SUS304)へのVPS-Wコーティング(0.2 mm)による不純物低減

磁化同軸プラズマガン@兵庫県立大学

典型的な放電波形

- ガン電流:~100 kA
- パルス幅: ~ 0.2-0.6 ms
- 放電ガス:水素、重水素、ヘリウム
- 運転周期: 10分

プラズマパラメータ計測

- ・He-Neレーザ干渉計による線平均電子密度計測
- ・材料照射位置(z = 340 mm)にて、線平均電子密度~2x10²¹ m⁻³

プラズマパラメータ計測

・イオンドップラー分光器(1m分光器、16ch PMT出力)
・He II (468.5 nm)のドップラー拡がり(イオン温度)、ドップラーシフト(フロー速度)
・イオン温度: 20 eV、イオンフロー速度: 70 km/s(E_i ~ 100 eV)

エネルギー密度計測

エネルギー密度	~2 MJ/m²
パルス幅	0.2-0.6 ms
コンデンサバンク エネルギー(最大)	144 kJ (10 kV, 2.9 mF)
フロー速度	70 km/s
イオン温度	20 eV
入射イオンエネルギー	100 eV
線平均電子密度	2x10 ²¹ m ⁻³
フラックス	1.4x10 ²⁶ m ⁻² s ⁻¹
フルーエンス	~3x10 ²² m ⁻²
※Heプラズマの場合	

- ・ITERのtype | ELMで想定されているエネルギー 密度のパルスプラズマの生成
- ·W表面溶融

<u>UCSD(Dr. D. Nishijima, Dr. R. Doerner)との共同研究</u>

PISCES-A(UCSD)により定常D, Heプラズマ照射をしたITER-grade Wを兵庫県立 大学に持ち込み、プラズマガン装置によりELM様パルスプラズマを照射した。

PISCES-A @ UCSD

● D blisters He-induced Fuzz ITER-grade W, 直径: 25.4 mm、厚さ: 1.5 mm

・定常Heプラズマ照射によりFuzzが形成されたWサンプル
・Heパルスプラズマ(0.3, 0.7, 1.1 MJ/m²)を1ショット照射
・0.3 MJ/m²ではサンプル表面にほぼ変化なし
・0.7 MJ/m²では表面が灰色になり、アーク痕を確認
(Dブリスターサンプルではアーク痕は確認されない)

0.3 MJ/m²

0.7 MJ/m²

1.1 MJ/m²

W-Fuzzに対するパルスプラズマ照射

W-Fuzz:黒色→灰色、白色 (Fuzzが溶融し、表面が スムースになるため)

1 μm

パルスプラズマ照射(1shot)による W-Fuzzの質量損失

W合金材、W被覆材に対する照射

(1) ITER-grade W (2) W-Ta(2wt%)合金

クラック形成の抑制が期待される。
(3) VPS W被覆低放射化フェライト鋼

- F82H: Fe-8Cr-2W-0.1C
- 熱伝導率がバルクWの30%程度

大阪大学(上田教授)との共同研究

VPS-W被覆F82H

(1) ITER-grade W(pure W) <u>10 plasma pulses of ~0.3 and 0.9 MJ/m²</u>

- サイズ:10 mm x 10 mm x 1 mm
- 鏡面研磨
- サンプルベース温度:室温
- 表面クラックの形成(~0.3 MJ/m²)
- クラック幅:~5μm

W合金材、W被覆材に対する照射

(2)W-Ta(2wt%)合金材 <u>10 plasma pulses of ~0.3 and 0.9 MJ/m²</u>

- サイズ:10 mm x 10 mm x 1 mm
- 鏡面研磨
- サンプルベース温度:室温
- 表面クラック:形成されない(~0.3 MJ/m²)
- 表面クラック幅(~0.9 MJ/m²) < 1 µm
 - ➡ 表面クラック形成の抑制(エネルギー密度閾値の上昇)

(a) Unexposed

10 µm

W合金材、W被覆材に対する照射

(3) VPS-W(低放射化材料F82H基板) <u>10 plasma pulses of ~0.3 and 0.9 MJ/m²</u>

- サイズ:10 mm x 10 mm x 1 mm
- 鏡面研磨なし
- サンプルベース温度:室温
- 表面形状の変化なし(~0.3 MJ/m²)
- 表面溶融と再凝固層でのクラック形成(~0.9 MJ/m²)
- ➡ 熱伝導率がバルクWに対して低いため、表面温度上昇が大きいと考えられる。

まとめ

磁化プラズマガン装置を開発し、エネルギー密度~2 MJ/m² (パルス幅0.2~0.6 ms)のパルスプラズマを生成、材料照射した。

(1) 定常プラズマ予照射Wに対する照射

	Fuzz W	DブリスターW
質量損失	~ 14% lost	無し
クラック	無し	有り
アーク発生	有り	無し

(2) W合金、W被覆材に対する照射

	ITER-grade W	W-Ta(2wt%)	VPS-W	
クラック形成 閾値(10シ ョット)	< 0.3 MJ/m²	~ 0.7 MJ/m ²	~0.9 MJ/m ² にて <mark>表面溶融</mark> 、 再凝固時にクラック形成	
			₩被覆の基板からの剥離 は確認されない。	

ダイバータおよびPWI合同研究会, 2012年7月23-24日, 筑波大学 今後の研究計画 ダブルプラズマガン装置@兵庫県立大学 Vapor shield効果を検証する実験 E_{inj} / Target Plasmoid 2 Plasmoid 1 Ē ^Ldelav Capacitor bank High-speed camera (Max:10 kV, 2.9 mF, 144 kJ) IDS GND Gas puff Bias field coil Π Ignitron valves Target Ð \sim Pre-heating Ceramic Inner electrode Outer electrode insulator TMP