平成24 年度 ダイバータおよびPWI合同研究会 2012年7月23-24日 筑波大学

星野一生¹, 藤間光徳², 清水勝宏¹, 朝倉伸幸¹, 飛田健次¹, 畑山明聖², 滝塚知典³

1原子力機構 2慶應義塾大学 3大阪大学

Background

Tungsten (W) is the most preferable candidate for the plasma facing material in the DEMO fusion reactor.

From the viewpoint of erosion by the seeded impurity species, thick W armor is desirable.

On the other hand, it is necessary to make the W armor as thin as possible, from the following points of view:

(i) sufficient heat removal for allowed operation temperature,

(ii) avoidance of decrease in tritium breeding ratio

by the neutron capture,

(iii) large decay heat in unit volume

Erosion of the W armor of SlimCS* in DEMO is numerically analyzed by SONIC and IMPGYRO-EDDY

SlimCS (K. Tobita., NF 47(2007)892., K. Tobita., NF 49(2009)075029.) Conceptual DEMO design for $P_{fus} \leq 3$ GW (with reduced-size CS (R = 5.5m and A=2.6)

Simulation study for power handling in DEMO divertor

SONIC simulation for SlimCS demonstrates the detached divertor plasma by the V-shaped corner and large Ar impurity seeding.

However, still $q_{pk,div} > 10MW/m^2$ (P_{fus}=3GW)

For further reduction of the divertor heat load, investigation of effects of seeded impurity transport, kind of impurity, divertor geometry, advanced divertor and so on, are in progress.

ex. Divertor geometry effect (simple impurity model)

Suite of integrated divertor codes SONIC*

input parameters

Core boundary at r/a=0.95: $F_i = 6 \times 10^{22} \text{ s}^{-1}$ D_2 Gas Puff: $6 \times 10^{22} \text{ s}^{-1}$ from mid-plane $4 \times 10^{22} \text{ s}^{-1}$ from outer div. $S_{Pump} = 200 \text{ m}^3/\text{s}$, $D=0.3 \text{ m}^2/\text{s} \ \chi = 1.0 \text{ m}^2/\text{s}$ (spatially constant) Ar gas puff to the outer divertor to achive $P_{rad}/P_{in}=92\%$

*H. Kawashima, Plasma Fusion Res. 1(2006)031, K. Shimizu, Nucl. Fusion 49(2009)065028.

IMPGYRO code

A. Fukano, JNM363-365(2007)211-215 M. Toma, JNM390-391, 207 (2009).

500

2.08+16

-2 (00-14)

3.40

R(m)

2,70

Assumptions / Note

- Analysis is performed for DEMO conceptual design SlimCS
- 3 cases: 3GW, 2GW, longleg
- Background plasma profile is fixed during W transport simulation.
- Initial W is generated only from the outer divertor by Ar sputtering.
- Self-sputtering/reflection is taken into account, but until 3 times.
- The power control in the divertor has not been overcome yet,

i.e., $q_{pk,div}$ >10MW/m² in the P_{fus}=3GW case

3GW case (reference): divertor plasma profile

7 / 16

3GW case: 2D profiles of W density

In the 1st generation, most of W particles deposit near the erosion layer.

In 2nd and 3rd generations, deposition rate decreases, because W particles with high emitted energy are transported upstream and some of them deposit on the dome.

2GW case: divertor plasma profile

2GW case: 2D profiles of W density

2GW case: dep./ero. speed at outer divertor

The erosion/deposition speed decreases by 2 orders of magnitude compared with the 3GW case.

Long-leg case (P_{fus}=3GW): divertor plasma profile

13 / 16

long-leg case: 2D profiles of W density

Long-leg case: dep./ero. speed at outer divertor ^{15 / 16}

Erosion/deposition speed is much smaller than other cases.

Because of weak shielding effect, erosion/deposition of W can be observed on the baffle.

Summary

Erosion and deposition of W armor in SlimCS has been analyzed by using SONIC and IMPGYRO-EDDY.

- **3GW case**: Large erosion by the self-sputtering. (strong background flow \rightarrow large incident energy of W \rightarrow large self-sputtering)
- **2GW case**: $q_{pk,od}$ is less than 7MW/m², but erosion is still too large as same as the 3GW case.
- **long-leg case**: Erosion is significantly small, but influx to the core is very large because of weak shielding effect.

In the present condition, the erosion speed cannot be acceptable. The divertor **plasma design for W armor lifetime** is necessary as well as the huge power handling. ex) flow control by puff and pump, low Te and Ti by full detachment.

W density in the divertor is considerably high. The significant radiation cooling and the resultant temperature decreases are expected. Therefore, the **self-consistent analysis** by coupled of plasma transport with W impurity generation/transport are necessary. (cf. SOLPS-IMPGYRO,) In the self-consistent analysis, the **erosion** of W armor **is possibly decreased** by

the W impurity radiation and the resultant decrease in Te and Ti.