Heat flux & Disruption (session 8-10)概要 第16回ITPA SOL・ダイバータ物理グループ会合

朝倉伸幸 日本原子力研究開発機構

平成24年度 ダイバータおよびPWI合同研究会: 第1回プラズマ物理クラスター・スクレープオフ層とダイバータ物理サブクラスター会合

平成24年度第2回炉工学クラスター・ブランケットサブクラスター会合

平成24年度筑波大学プラズマ研究センターシンポジウム

双方向型共同研究「ガンマ10装置における炉壁材料の損耗・再堆積の研究とそのダ イバータ開発戦略における位置づけ」会合

平成24年7月23-24日 筑波大学

SOL width and Disruption sessions

今回の主な検討課題は

EU及びUSでの定常(ELM間)熱流束分布幅とITERへの影響 VDE熱負荷およびMGIによる熱負荷緩和効果

8	Follow up on SOL width			Chair R. Pitts
		11:05 0:05	R. Pitts	Introduction
		11:10 0:20	T Eich	EU effort
		11:30 0:20	T Leonard	US effort
		11:50 0:20	B. Lipschultz	Comparison of Eich to US model fits of heat load footprints
		12:10 0:20	A. Kukushkin	Consequences of short SOL widths for ITER divertor power handling
		12:30 1:15	Lunch	
		13:45 0:20	J. Gunn	Follow up on Tore Supra start up experiments
		14:05 0:20	G. Matthews	JET start up experiments
		14:25 0:25	R. Pitts	Discussion
9	Disruptions			Chair R. Pitts
		14:50 0:05	R. Pitts	Introduction
		14:55 0:20	T. Leonard	VDE on DIIID
		15:15 0:20	B. Lipschultz (tbc)	Non-mitigated VDE divertor heat loads on CMod
		15:35 0:20	M. Lehnen	Preliminary results on VDE in JET
		15:55 0:20	M. Lehnen	Recent results from TEXTOR
		16:15 0:20	Break	
		16:35 0:20	C. Grisolia	The FIRE experiment on TS
		16:55 0:20	W. Fundamenski	MGI in MAST
		17:15 0:20	M. Lehnen	Radiation asymmetries during MGI : status (joint MHD-DivSOL)
		17:35 0:25	R. Pitts	Discussion
10	Heat flux R&D			Chair T. Leonard
		18:00 0:30	T. Leonard	Discussion

SOLでの熱流の分布幅のスケーリング1 (EU)

赤外カメラで外側ダイバータ板のELM間の)熱流束分布を測定し、SOLでの熱輸送とダイ バータ部での熱輸送を分けたモデルによりフィットした ⇒ λq,Sを導出 Approach: Numerical fitting of λ_{int} (mm) "= 4.5 q(s) for the complete target heat flux (MWm⁻²) N λ_q = 2.6mm profile $(s_0, q_0, q_{bg}, S, \lambda_q)$ = 1.34 x + 1.78 λ_{int} = 5.8mm λ_q : Exponential power fall-off at the divertor entrance λ_q(mm) AUG # 17148 $q(\bar{s}) = q_0 \cdot \exp\left(-\frac{\bar{s}}{\lambda_a f_x}\right)$ 000 $f_{exp} = 5.5$ S: Exponential profile radially λ_{int} (mm) $q(\bar{s}) = \frac{q_0}{2} \exp\left(\left(\frac{S}{2\lambda_q f_x}\right)^2 - \frac{\bar{s}}{\lambda_q f_x}\right) \cdot \operatorname{erfc}\left(\frac{S}{2\lambda_q f_x} - \frac{\bar{s}}{S}\right) + q_{BG}$ $\int \mathsf{ET} \quad \mathrm{Ip} : 1.5 - 3.5 \mathrm{MA} \Rightarrow \lambda \mathrm{q}: 3.5 \text{ to } 1.3 \mathrm{mm} \quad \mathrm{S}: \sim 1 \text{ to } \sim 0.4$ $\mathrm{AUG} \quad \mathrm{Ip} : 0.8 - 1.2 \mathrm{MA} \Rightarrow \lambda$ $\lambda_a = 2.3 \text{mm}$ λ_{int} = 3.8mm λ_q (mm) JET #75968 1.5 2 2.5 No. of Concession, Name -40 -20 20 0 3 (mm) 40 60 80 注) 積分平均による熱流幅スケーリングは数10%程度広がる. 小さいときはベース部分による違いを反映。 $\lambda_{int}^{JET} = 1.26 \cdot \lambda_{g}^{JET} + (0.94 \pm 0.32) \,\mathrm{mm}$ $\lambda_{int} = \frac{\int (q(s) - q_{BG})ds}{q_{max}} \cdot f_x^{-1}$ $\lambda_{int}^{AUG} = 1.34 \cdot \lambda_{a}^{AUG} + (1.78 \pm 0.68) \,\mathrm{mm}$

SOLでの熱流の分布幅のスケーリング2(EU)

炭素ダイバータで重水素放電、 SOLは低密度(Hモード)で接触 ダイバータ熱負荷分布のλqを スケーリング

サイズスケーリングも導入 (ほぼ依存しない)

 λq -ITER = 0.94mm

今後の検討事項:

- ダイバータでの輸送効果Sのスケーリ ングを検討(JETでは0.5-1mm程度 (赤道面にマッピング)
- ・ 幾何形状、磁力線長、非接触でのエ ネルギー散逸の影響?

Quan	Quantity		nit	JET		AUG		AUG extended*		
Bto	Btor			1.0 - 3.35		2.0-2.4		1.5-2.6		
Curre	Current		Ą	1.0 - 3.5		0.8-0.9		0.8-1.2		
Q9	5	1		2.8 - 5.6		4.5-5.1		3.2-5.7		
PNE	31	M١	N	5 – 20		2.5-12.5		2.5-12.5		
f_GW				0.44-0.85		0.49-0.73		0.37-0.79		
Flux exp	m	m	4.9-7.	8	4.5-6.8		4.5-7.2			
R, a	R, а (к)		1) 2.	95, 0 .95	(1.7)	1.62, 0.51 (1.8)		1.62, 0.51 (1.8)		
Discharg	Discharges (D)			56 11			35			
	Regr para	ession meter	7	$\lambda_q(mm) = C \cdot B^{\alpha}_{tor}(T) \cdot q^{\beta}_{cyl} \cdot P^{\gamma}_{SOL}(MW)$				W)		
	AUG* only			$\lambda_{q} = 0.68 \cdot B_{tor}^{-0.76} \cdot q_{cyl}^{1.29} \cdot P_{SOL}^{0.14}$						
	JET only			$\lambda_{q} = 0.70 \cdot B_{tor}^{-0.84} \cdot q_{cyl}^{1.23} \cdot P_{SOL}^{0.14}$						
Regression parameter $\lambda_q(mm) = C \cdot B^{\alpha}_{tor}(T) \cdot q^{\beta}_{cyl} \cdot P^{\gamma}_{SOL}(MW) \cdot R^{\beta}_{SOL}(MW)$						$MW) \cdot R_g^{\delta}$	$\tilde{b}_{reo}(m)$			
IJ	AUG + JET		λ_q :	$\lambda_{q} = 0.73 \cdot B_{tor}^{-0.78} \cdot q_{cyl}^{1.20} \cdot P_{SOL}^{0.10} \cdot R_{geo}^{0.02}$						
支		ITER	R _{geo}	а	B _t	I _p	q _{cyl}	P _{sol}		
のエ			m	m	т	MA	1	MW		

6.2

2

5.3

15

2.4

120

4

SOLでの熱流の分布幅のスケーリング3 (US)

	I _p (MA)	B _t (T)	f_{GW}	a (m)	R (m)	P _{sol} (MW)	
Range	3.0 x	14.7 x	3.0 x	2.7 x	2.5 x	9.8 x	
CMOD	0.5 – 1.0	4.6 - 6.2	0.3 – 0.7	0.22	0.69	0.6 - 3.0	
DIII-D	0.5 – 1.5	1.2 – 2.1	0.4 - 0.6	0.60	1.75	1.2 – 4.5	
NSTX	0.6 - 1.2	0.42 -0.49	0.3 - 0.9	0.60	0.86	2.4 - 5.9	

炭素ダイバータで重水素放雷のデータのλg.Sをスケーリング

SOLでの熱流の分布幅のスケーリング4 (US)

a/I_o 依存性⇒ β によるスケーリングを示唆

Goldstoneにより提案されたドリフトを加味した予測モデルとも比較的合う

6

pol. gyro-radius(1/Bp^{mid})に比例する

a ^{17/8}	a^2	a	1
$I_p^{9/8}R$	$\approx \overline{I_p R} =$	R	B_p

DIII-Dでは赤道面でのトムソン散乱測定による n_e(>5mm) T_e(>5mm) p_e(>4mm)分布からも熱流 東分布を評価

ITERでの熱流束分布の影響 1

粒子拡散係数及び熱拡散係数を同時に1/2, 1/4に減少 ⇒ λq は3.5mm -> 1.5-2mm -> 1.3-1.5mmに減少 ダイバータでのピーク熱負荷は非接触が進めば10 MW/m²以下になる Constant ⊥ diffusivities, 3 sets

x1: $D_{\perp} = 0.3 \ m^2/s, \ \chi_{\perp i,e} = 1 \ m^2/s$ x2: $D_{\perp} = 0.15 \ m^2/s, \ \chi_{\perp i,e} = 0.5 \ m^2/s$ x4: $D_{\perp} = 0.075 \ m^2/s, \ \chi_{\perp i,e} = 0.25 \ m^2/s$

Radial grid spacing finer near separatrix for x2, x4

B2 grid

ITERでの熱流束分布の影響 2

ITERでの熱流束分布の影響3

高サイクリング(P_n=10Pa)では、 プラズマによる熱流は低減

⇒ ターゲット付近での放射損 失が顕著となり熱負荷ピーク が増加(右図)

低サイクリング(P_n=1.5Pa)では、 プラズマによる熱流が顕著

⇒ ピーク熱負荷は (1/4ケース)26MW/m² (通常) 13MW/m²

1/4ケースでは、SOLでの(最大)プラズマ圧力勾配がペデスタル部よりも大きくなる! 実験経験とは矛盾するため問題 ⇒ 熱・粒子拡散係数同時変化、拡散係数一様の問題 Experiment: ∇p_{SOL} weaker than ∇p_{ped} SOLPS: $\nabla p_{SOL} > \nabla p_{crit}$ for $\lambda_q \le 2 \text{ mm}$, $P_{SOL} = 100 \text{ MW}$ $\rightarrow \nabla p_{SOL} < \frac{\alpha_{bln}}{2\mu_0} \frac{B^2}{q^2 R}$ where $\alpha_{bln} \sim 1$

ディスラプション・VDE熱負荷とMGP 1

VDEによる第一壁熱負荷と不純物ガスMGI(Massive Gas Injection)実験の報告

DIII-D :

- 通常のVDEは30ms程度の時間スケール:
 プラズマが下側内壁と外側バッフルにあたり、
 TQで最も大きなピーク熱負荷
 - ⇒ CQ初期で炭素による放射損失がピーク
- •VDEの開始からのNe-MGI時刻をスキャン(5-24ms):
 - 下側へのシフトが速くなる
 - 早期入射(<10ms)ほどTQでの熱負荷は低減(プラズマ束は増加)、
 - CQでの熱負荷は若干低減:
 - ⇒ 約半分程度のダイバータへの熱負荷(プラズマと放射パワー)を低減 distance along floor Neによる放射損失が増加 ⇒第一壁からの炭素の損耗を低減 トロイダル非対称性も低減し、容器に流れる電流の低減により半分以上のjxB低減可能

C-MOD:

- ・内外ダイバータタイルに、表面TCとカロリーメータアレイを設置(2.6ms時間応答)
- ・VDEおよび溶融したWによるDisruption実験を行う
 - ⇒ 両者とも熱負荷分布は広がり、ダイバータ部よりもバッフル板の方に高い熱負荷: MGIの方がより大きな熱負荷(Mag. W -> plasma Wへ)

TEXTOR, ToreSupra, MASTなどでのMGI結果が報告

10

ディスラプション・VDE熱負荷とMGP 2

11

T(C) - 1600

-1200

-800

400

JPN 81555, t = 19ms

JET-ILW:

- ・ILWでは一般に放射損失が減少し、CQ時間が増加
 - ⇒ 高い温度が維持される
- VDE: 上側の内側第一壁とダンププレートに接触する OHでもNBI中でも(Wrad/(Wmag+Wth) <10%
- ・Upper dump plate のエッジが溶融

MGIによる緩和(CダイバーとILWとの比較)

- ・D2入射の場合、放射損失が減少 ⇒ CQ時間が増加(30->80ms)
- ・Ar+D2 MGIの場合は、同程度まで放射損失が増加
 - ⇒ dump plate への熱負荷低減
- C: (Wrad/(Wmag+Wth) $\leq 80\%$

ILW: (Wrad/(W_{mag} +Wth) < 30%

