第16回 ITPA (SOL/DIV)の概要 (ITER divertor strategy, W melting, W fuzz, W HHF testing)

上田良夫(大阪大学)

PWI 合同研究会 平成24年 7月23日-24日

筑波大学プラズマ研究センターシンポジューム プラズマ物理クラスター スクレープオフ層とダイバー タ物理サブクラスター(第1回会合) 炉工学クラスター ブランケット サブクラスター(第2回会合) 双方向型共同研究会合「ガンマ10装置における炉壁材料の損耗・再堆積の研究と そのダイバータ開発戦略における位置づけ」

January 18 (Wed)-19 (Thu)

Update on ITER / JET		Chair -E. Tsitrone
	R. Pitts	ITER divertor strategy
Tungsten melting		
experiments		Chair A. Kallenbach
	J. Coenen	W melt experiments in AUG and Textor
	B. Lipschultz	C-mod results on W melting
		Modeling of W melting experiments and extrapolation
	B. Basylev	for ITER
Tungsten fuzz		Chair Y. Ueda
		W fuzz in Alcator C-Mod and comparison of the role of
	G Wright	He with linear devices
		Behavior of a helium-modified (<u>fuzzy) surface</u> during
	G de Temmerman	transients
Tungsten HHF testing		Chair Y. Ueda
	H. Greuner	Damage studies on different W grades with GLADIS
	E. Tsitrone	HHF testing of ITER components
		Tungsten damage under simultaneous steady-state
	G de Temmerman	and transient loads
	J. Linke	Damage threshold for W under ELM-like thermal loads

各セッションのまとめ

- ITER divertor strategy
 - ITERのWダイバータ検討の現状
- Tungsten Melting
 - <u>TEXTORやAUGでの、リーディングエッジの溶融実験(後述)</u>
 - C-ModにおけるWタイル溶融層の挙動とプラズマへの影響
- Tungsten Fuzz
 - <u>C-ModにおけるFuzz生成実験→Fuzz様表面が閉じ込め装置</u> <u>で形成された(後述)</u>
 - Pilot-PSIによるFuzzの形成とパルス熱負荷影響
 - □ あるエネルギー以上のELM様熱パルスで消失(W放出なし)
- Tungsten HHF Testing
 - GLADIS(イオンビーム装置)照射によるWの表面状態変化
 - <u>EUが行ったHHFの熱負荷試験の結果(後述)</u>
 - <u>定常+ELM様プラズマパルスによる異常損耗(後述)</u>
 - 電子ビームによるELM様熱パルス繰り返し照射効果のまとめ

ITPA 2012 - Juelich

Mitglied der

IPP

W melt-experiments in ASDEX Upgrade and TEXTOR

J.W. Coenen(1*), Karl Krieger⁽²⁾ and Contributors

(*) EFDA Fusion Researcher Fellowship

Institut fuer Energie und Klimaforschung - Forschungszentrum Juelich GmbH, Germany
Max-Planck Institut fuer Plasma Physik, Garchingen Germany

Part of DSOL-25

Institut für Energie und Klimaforschung – Plasmaphysik | Assoziation EURATOM – FZJ

Jan W. Coenen | Institut für Energie und Klimaforschung – Plasmaphysik | Assoziation EURATOM – FZJ

- Melt is flowing following jxB down into the Divertor
- Leading edge is not smoothed but persists
- Molten material is now impacted by q_{||} in subsequent shots – responsible for discharge terminations ?

POST

Melting

PHIE

Tungsten nano-tendril growth in the Alcator C-Mod Divertor and the role of He

G.M. Wright, D. Brunner, B. LaBombard, B. Lipschultz, J.L. Terry, and D.G. Whyte Plasma Science & Fusion Center, MIT, Cambridge USA

Tungsten probe reached and exceeded surface temperatures required for fuzz growth

W probe ramped ~11° into parallel heat flux and is electrically/thermally isolated. Mo tiles are grounded and ramped at ~2°

→W probe intercepts significantly more parallel heat flux and *rapidly* reaches *higher surface temperatures*.

Surface heat flux is obtained directly from probe measurements. W probe T_{surf} is determined from 1-D heat flux modeling. Mo tiles T_{surf} determined with IR thermography

Note: Surface continues to be modified at T_{surf} > 2000 K but the morphology changes

Nano-tendrils are fully formed on surface of the tungsten probe exposed to heat fluxes of 30-40 MW/m²

Шiī

After exposure

Thickness of individual tendril is 50-100 nm, which is thicker than tendrils grown in linear devices (20-30 nm)

œ

High Heat Flux Testing of ITER tungsten plasma facing components

E. Tsitrone on behalf of M. Missirlian

*This work was supported by the European Communities under the contract (F4E-2008-GRT-05) between F4E and CEA

16th ITPA DivSOL meeting, FZJ, January 16-19, 2012

• Qualification of CFC/W components after Manufacturing Phase

- Good bonding quality of CFC/W armoured components including recent/consolidated (European) development: Optimization/Reliability of bonding technologies, Repairing process
- Damage valuation after thermal cycling (up to 20 MW/m²) in steady state

16th ITPA DivSOL meeting, FZJ, January 16-19, 2012

Tungsten damage under simultaneous steady-state and transient loading

G. De Temmerman¹, B. Hensen¹, K. Bystrov¹, L. Marot², H.J. van der Meiden¹, J.J. Zielinski¹

¹Dutch Institute For Fundamental Energy Research (formerly FOM Institute for Plasma Physics Rijnhuizen), Ass. EURATOM-FOM, Trilateral Euregio Cluster, Postbus 1207, 3430 BE Nieuwegein, The Netherlands

²Dept of Physics, University of Basel, Klingelbergstrasse 82, Basel, Switzerland

Motivation (2/2)

3 Some hints of synergistic effects already observed in NAGDIS/PISCES

□ Need to investigate what happens at higher flux densities

An ELM is accompanied by significant ion flux (not included in those experiments)

[2] S. Kajita et al, Appl. Phys. Lett. 91 (2007), [3] K. Umstadter et al, Phys. Scr. T138 (2009)

G. De Temmerman

16th ITPA SOL/Div meeting, Juelich, January 2012

3000

2500

Experimental procedure

High speed IR camera (25kHz) to minitor surface temperature

Peak surface temperature 800 2000 Temperature Hydrogen Heat flux 0.3MJ.m⁻² 600 1600 400 1200

Temperature risetime: 0.5-1ms relevant for Type-I ELM

Superimposition of divertor relevant steady-state plasma and transient heat/ particle pulse

Plasma-enhanced surface damage

Measured ablation threshold much lower than expected

G. De Temmerman et al, IAEA FEC, 2010

6th ITPA SOL/Div meeting, Juelich, January 2012

Plasma-enhanced surface damage

Synergistic effect:

- Bubble formation due to high-flux plasma
- Explosive release of material during transient

Re-definition of tolerable energy densitites in ITER might be necessary

G. De Temmerman et al, IAEA FEC, 2010

6th ITPA SOL/Div meeting, Juelich, January 2012

