平成24 年度ダイバータ およびPWI合同研究会 (筑波大学)

ITER ダイバータのR&D 進展 原子力機構 ブランケット工学 鈴木 哲

アウトライン

- ITERダイバータ開発(調達)の状況 - 外側ターゲット実規模プロトタイプの製作
- フルタングステンダイバータについて

 ITER機構における設計の進展
 原子力機構におけるR&Dの状況

ITERダイバータを取り巻く状況

- ITERの建設が開始され、ダイバータ調達に関しても2009年末 までに実機ダイバータ調達を予定する調達極(日本、欧州、 ロシア)に対して、中型のダイバータ模擬試験体 (Qualification Prototype)の製作及び高熱負荷試験を通じ たPrequalificationと呼ばれる技術的能力に関する確認試験 が完了した。
- 日本国内機関(JADA)となっている原子力機構はこの Prequalificationに合格し、2009年6月、ダイバータ外側ター ゲットの調達に関する調達取り決め(Procurement Arrangement)をITER機構との間に締結して、ダイバータ外側 ターゲットの調達を開始した。
- 一方、2011年10月に開催されたITERの諮問委員会(科学技術 諮問委員会(STAC)、運営諮問委員会(MAC))において、 ITER機構から運転当初から原型炉を志向したタングステンダ イバータを装荷することが提案され、ITER理事会(IC)において、今後2年間を目処にタングステンダイバータ開発を集中 的に実施し、ダイバータアーマ材の最終的な選定を実施することとなった。

ITERダイバータ(現設計)

調達スケジュール(1stセット)

実規模プロトタイプの製作 (要素技術のクォリフィケーション)

実規模プロトタイプは実機用の 機器と同等の製作プロセス及び 品質保証が求めら<u>れている。</u>

CuCrZr/SS 316L異材管溶接部の強度試験

- EBW(CuCrZr/Inconel), TIG(Inconel/SS316L)
 - 引張試験 (200MPa@150°C)
 - 曲げ試験(表曲げ、裏曲げ)
 - 回転曲げ疲労試験(20℃、 10000回、0.1%ひずみ振幅)
 - Heリーク試験(回転曲げ疲労 試験の前後に実施
 - 10⁻¹⁰ Pa m³/s以下)
- プラズマ対向ユニット支持脚の荷重試験
 - CFC/Cu/SS316L

3kN く 引張荷重

• W/Cu/SS316L

8kN < 引張荷重 ※2009年~2010年にプラズマ 対向ユニット初号機(PFU#1)製作の ためのクォリフィケーションを完了

200mm

実規模"プリ"プロトタイプPFUの製作

Pre-Protoの外観とCFCアーマ部の 赤外サーモグラフィ検査結果 緩衝材の変更を踏まえ、実規模 プロトタイプ施工着手前の最終 的な製作性検証として実施

- アーマ材
 - CFC部: CX-2002U
 - W部:模擬材 (NAK-55)

ロウ付け施工時のアーマ材/緩 衝材/冷却管のズレ等は検出さ れず

赤外サーモグラフィ検査で、中 央のCFCアーマ1枚に接合不良が 確認された。

– 実規模プロトタイプPFU施工
 前に拘束治具を改良して対
 処

要素技術クォリフィケーション及び実規模プリプロトタイプ製作の成果を踏まえ、2011年1月からロウ付け施工を開始した。

実規模プロトタイプ (初号機; PFU#1)の製作

- プラズマ対向ユニット(PFU#1:6体)の製作を2011年
 に完了
- 2012年秋に高熱負荷試験(エフレモフ研)を予定

赤外サーモグラフィ検査用フ レームに組み込まれたPFU#1 (3体のPFUを同時に検査可 能:2011年6月)

高熱負荷試験用のテストフレームに装荷され たPFU#1(6体のPFUを同時に試験可能:2012 年5月)

アウトライン

• ITERダイバータ開発(調達)の状況 - 外側ターゲット実規模プロトタイプの製作

OVT:

- Implement roof shaping and tilting at baffle, tilting and fish-scale (local) shaping at target
- Simple chamfered Monoblock shape (to be optimized) at baffle set-back
- Roof shaping by 3 PFUs at each side
- Simple PFU coolant tube profile

(AEA) Overall monoblock distribution at OVT

タングステンダイバータ小型試験体

試験体ID	員数	メーカー	タングステン厚さ [mm]	タングステン軸 方向長さ [mm]	タイル数
I11-W-AL-1, -2, -3	3	ALMT	16.5	12	5
I11-W-AL-4, -5	2	ALMT	15	12	5
I11-W-AT-1, -2	2	AT&M	16.5	8	7
I 11-W-MM-1, -2, -3	3	MMC	16.5	12	5
I11-W-AT-3, -4	2	AT&M	16.5	12	5

これらの試験体については、主とし
 て原子力機構の電子ビーム試験装置
 JEBISにて加熱試験の予定。一部を、
 IEA炉工協定に基づき、ユーリッヒ研
 (ドイツ)の電子ビーム試験装置
 JUDITHにてELM-likeな繰り返し熱
 負荷試験を実施するべく調整中。

製作方法

- タングステンの仕様:ASTM B760-86規格材
- 冷却管接合部への無酸素銅緩衝層の接合
 - ALMT: 無欠陥接合法 (NDB法)
 - AT&M: HIP接合法
 - MMC: 拡散接合法
- ロウ付け接合時におけるCuCrZr冷却管の強度回復のためのクエンチ速度の実測値

	986°C -> 867°C	867°C->622°C	ビッカース硬さ
1st batch	0.12°C/s	4.9°C/s	104 Hv _{300gf}
2nd batch	0.10°C/s	3.2°C/s	94.6 Hv _{300gf}
	炉冷(ヒータOff)	N ₂ ガス導入 +ファン冷却	

タングステンダイバータ小型試験体の熱解析(2)

20MW/m²,1 Os	温度(℃)	熱流束				
	P1	P2	P3	P4	P5	P5
H28.0D16.5	2290	2124	509	415	275	36.2MW /m ²
H26.5D15.0	2014	1775	427	412	275	35.5
H25.0D13.5	1830	1475	506	415	275	36.0
10MW/m²,1 5s	温度(℃)	熱流束				
	P1	P2	P3	P4	P5	P5
H28.0D16.5	1102	1026	314	272	210	15.2
H26.5D15.0	982	878	276	270	208	15.1
H25.0D13.5	878	735	311	269	209	15.1

P1: Edge of W surf.

P

P2

P5

P2: Center of W surf.

P3: W/OF interface

P4: OF/CuCrZr interface

P5: CuCrZr/water interface

まとめ

- 2009年度からダイバータ外側ターゲットの調達を開始した。
 調達活動の最初のステップとして外側ターゲット実規模プロトタイプの製作を開始した。
- 2011年度に実規模プロトタイプ用プラズマ対向ユニット PFU#1の製作を完了した。2012年度中にPFU#1をロシア(エフ レモフ研)に輸送し、高熱負荷試験を実施予定である。
- 2013年秋に予定されるアーマ材の最終選定に向け、タングス テンダイバータ小型試験体の高熱負荷試験をJEBISにて開始 した。さらに、IEA炉工協定に基づき、ユーリッヒ研(ドイ ツ)の電子ビーム試験装置JUDITHにてELM-likeな繰り返し熱 負荷試験を実施するべく調整中。
- 現状のタングステンモノブロック断面では、熱負荷20WW/m²
 においてタングステン表面が再結晶温度(1300-1400℃)を 超えると共に、限界熱流東マージンが小さくなるため、今後、 ITER機構と協力して熱構造設計に関する検討をすすめる。