平成24ダイバータおよびPWI合同研究会 平成24年度第1回プラズマ物理クラスター スクレープオフ層と ダイバー タ物理サブクラスター会合 平成24年度第2回炉工学クラスター ブランケット サブクラスター会合 平成24年度筑波大学プラズマ研究センターシンポジウム 平成24年度双方向型共同研究会合「ガンマ10装置における炉壁材料の損耗・

再堆積の研究とそのダイバータ開発戦略における位置づけ」会合

— 核融合炉における課題 —

エオルギー変換装置としての対イバーない課題

2012.7.23 筑波大学B-119

京大 小西哲之

ダイバータの機能

炉設計からのダイバータへの要求

デタッチは必ずしも期待しない 冷却だけなら水、Heでできるが?? 熱利用ならブランケットと同じ媒体、近い温度 →高温が取り出せないとプラントにならない

ITERとそれ以降

炉設計から見てITERより厳しい目標は難しい ー低Qで大きな加熱入力を受ける ーディスラプション、ELMの制御が期待できない ープラズマ性能が上がれば要求はさらに厳しい

熱粒子を受け止めるだけでは十分ではない ーブランケットと同程度の寿命は必要 ーブランケットと「相性の良い」冷却媒体 ー高温取り出し、ポンプ動力

コンポーネントとしてのダイバータ

ープラズマ、表面だけがダイバータではない - 熱流束は温度差、熱応力のもと

GNOME parameter

		ITER	GNOME
Major radius	R _p	6.2 m	5.2 m
Aspect ratio	A	3.1	3.1
Current	I _p	15 MA	10.4 MA
Max field	B _{max}	11.8 T	11 T
Average temperature	<t<sub>e></t<sub>	8.9 keV	13 keV
Density	f _{GW}	-	0.54
Bootstrap	f _{BS}	-	0.45
Fusion power	P _{fus}	500 MW	300 - 400 MW
Heating	P _{CD}	73 MW	85 MW
Neutron wall load	P _n	0.57 MW/m²	~ 0.5 MW/m ²

1. ブラズマ

ITERから大きな進歩を想定しないで可能なプラズマ ー大型トカマクで実証、理解されている範囲の延長 ーITERで想定、計画されている

2.ダイバータ

デタッチは必ずしも期待しない(限界を探る) バイオマスハイブリッドでなら許される低負荷 熱利用可能な媒体を取り出す ブランケットと同程度の寿命を想定 現在の技術で想定可能な材料 既存のダイバータ素子と同程度の高熱流束試験 タングステンである程度解明された表面挙動

ほぼすべてのCD入力とα出力が壁に来る

- ーブランケットは、第1壁とバルク両方(表面は,1MW/m²を想定)
- ーどの程度が放射で分散できるかは不明
- ー高出力、高出力密度ではどちらもが厳しい

2.非定常負荷

~10MW/m²の変動する負荷を想定する(ELMのタイプによる) ーディスラプションは時定数で制御(蓄積エネルギーは来る) 一場所的局在は避けられない→部分が耐えても

平均すれば出口温度は低くなる

3. 粒子負荷 デタッチの状況によりスパッタリングが大きく違う タングステンの利用はさけられない

現在考えている対応

Institute of Advanced Energy, Kyoto University

〇熱媒体を流せて熱伝導が足りる材料がない

- ・熱利用を考えると10Mw/m2を超えられない
- ・粒子負荷を考えればタングステンしか表面は解がない
- ・冷却に水、ヘリウム、液体金属の選択で材料が変わる
- ・強度要件は熱応力で決まる
- ・安全性への要求から、非圧縮性が望ましい

○ 熱利用系を考えたダイバータ

- 液体金属冷却は、冷却能力に劣るものの、出口温度の高さ、 (液体ブランケットなら特に)ブランケット冷却との 整合性、非圧縮性、低圧に基づく安全性にメリット
 液体金属冷却の設計ウィンドウは狭く、バイオマス ハイブリッド領域以外は極めて厳しい
- SiC-W材料が適合できるが熱伝導がネックになる。

低利得炉におけるダイバータの課題

平衡計算の結果を用いてダイバータ解析を行うことで、目標利得を 達成するために必要な放射エネルギーを算出する解析を行った。

粒子負荷による壁材料の損耗 (アタッチでの動力炉は可能?)

ダイバータへの熱流束

平衡計算により解析したダイバータへ流入する熱量

平衡計算による電流分布解析結果の例

シナリオ毎の安全係数分布

		Operation regions				
		Q ~ 3	Q ~ 4	Q ~ 5		
Normalized beta	b _N	2.8	3.4	3.9		
Average temperature	$< T_e > (keV)$	12.8	13.5	14.4		
Power to SOL	P _{SOL} (MW)	106	129	155		
Fusion gain	Q	3.0	4.1	4.8		

目標Q値毎に場合分けすることで、それぞれシナリオの達成可能性を評価する。

ダイバータへの粒子・熱負荷

ダイバータへの熱負荷粒子負荷解析モデル における粒子バランスの模式図

モデルによって得られる粒子束 と熱流束の関係

エネルギーバランス、粒子バランスを考慮したダイバータモデル

→ 熱流束が許容値となるために必要な放射エネルギーを求める。

熱利用可能なダイバータ

ダイバータ許容熱流束に対し、目標利得を達成するために必要な放射エネルギー

熱負荷に対して設計領域は存在

➡ 粒子負荷に対しての検証は実験が必要

熱応力σ≦S_m $\sigma = \frac{\alpha E}{2(1-\nu)}$ $\equiv C \Delta T$ $\Delta T = \frac{\delta}{2} q''$ $\therefore q'' = \frac{\lambda}{\sigma} \sigma$

- 材料の厚さ、熱流束と熱伝導度による温度差、応力により設計ウィンドウが決まる。
- 現在得られるSiCではバイオマスハイブリッド領域なら設計は 可能だが非常に厳しい。
- 照射による熱伝導の低下を考慮していない。

		Name	ITER	GNOME	Slim-CS	CREST	ARIES- RS	ARIES- AT	PPCS-A	PPCS-B	PPCS-C	PPCS-D
		Country		Japan	Japan	Japan	U.S.	U.S.	Euro	Euro	Euro	Euro
		Group		Kyoto	JAERI	CRIEPI	ARIES	ARIES				
		proposed year		2010	2007	2000	1998	2000	2005	2005	2005	2005
Major radius	Rp	m	6.2	5.2	5.5	5.4	5.52	5.2	9.55	8.6	7.5	6.1
Minor radius	а	m	2	1.7	2.1	1.6	1.38	1.3	3.2	2.9	2.5	2.0
Plasma current	lp	MA	15	10.4	16	12	11.32	12.8	30.5	28	20.1	14.1
Toroidal field	Bt	Т	5.3	4.4	6	5.6	7.98	5.86	7	6.9	6	5.6
Maximum field	Bmax	κ Τ		11	16	12.5	16	11.1	13.1	13.2	13.6	13.4
Safety factor	q_{w}			3.6	5.3	4.3						
Average temperature	<Ťe>	keV	8.9	13	17	15.4		18	22	20	16	12
Average density	<n<sub>e></n<sub>	10 ²⁰ m ⁻³		0.61	1.1	2.1		2.15	1.1	1.2	1.2	1.4
Improvement factor	HHy2			1.4	1.3			1.37	1.2	1.2	1.3	1.2
Imporvement factor	H89P				2.59	3.2		2.65				
Normalized beta	βN			3.1	4.3	5.5	4.8	5.4	3.5	3.4	4	4.5
Bootstrap current fraction	fBS	%		45	66	83	88		45	43	63	76
Normalized density	f _{GW}			0.54	0.97	1.3		0.915	1.2	1.2	1.5	1.5
Fusion power	Pfus	MW	500 (700)	324	2877	2970	2170	1755	5000	3600	3410	2530
Conversion efficiency	ŋ		, ,	2		0.41	0.38	0.59	0.31	0.37	0.43	0.60
Current drive power	P _{CD}		73 (100)	60.7	83	97	81	34.6	246	270	112	71
Neutron wall load	Pn		0.57 (0.8)	0.48	3.1	4.5	4	3.3	2.2	2	2.2	2.4
Energy multiplication	Q		10	5.3	35				20	13.5	30	35
Structure material							V & steel	ferrite	ferrite	ferrite	ferrite	SiCf/SiC
Support material								SiCf/SiC			SiCf/SiC	
breeder material					solid	Li2ZrO3	Lq. Li	LiPb	LiPb	Li ortho- silicate w/ Be	LiPb	LiPb
Coolant				LiPb	water	water	Lithium	LiPb	water (15 Mpa)	He (8 Mpa)	LiPb	LiPb
Coolant temp.		°C		> 900			610	1100	300	300-500		700-1100

動力炉では、発電系が主なトリチウム放出源となる

ダイバータにおけるポンプ動力

磁束管の拡張概念

磁束管の拡張によるポンプ動力の緩和

ダイバータに関して300-500 MWにおいてはポンプ動力が現実的範囲 1 GW以上の炉においてはピーク負荷が緩和できてもポンプ動力が甚大

ヒートシンクの機能

ダイバータに入った熱をクーラント配管に伝える クーラントの温度を利用可能な領域にすると、 熱流束を約一桁下げなければならない (~0.1MW/m²を想定) 一空間的、時間的局在が問題 ーこの局在は特定されない →今のところモノブロック以外の解がない

> →冷却材配管に熱を伝える(それも高温で)部分の 温度勾配を下げるためには、熱を分散させなければ ならない

> > →配管材への伝熱の向上が必要

複合材による一方向熱伝導の改善

複合材中の繊維による熱伝導

熱伝導率の結果

○熱媒体として300℃以上なら液体金属の利用が可能

- ・安全性への要求から、非圧縮性が望ましい
- ・トリチウム除去の観点から水は厳しい
- ・Heはポンプ動力が大きな問題となる
- ○構造材は、繊維による熱伝導の向上をはかる
 - 熱流束方向には熱伝導を促進することができる
 - ・複合材として、ダイバータ素子の構成は可能

〇 ヒートシンクにおける熱移送は根本的な改良が必要

- ダイバータターゲットから熱媒体までの熱移送は まだ工学的に十分検討されていない
- ・冷却だけなら、モノブロックは機能要求を満たしている