

名古屋大学工学研究科





ダイバータシミュレータ研究

周辺プラズマは開いた磁力線構造を有する

→直線型装置を用いたダイバータ模擬研究

直線型ダイバータ模擬試験装置

- 定常で高密度プラズマの生成が可能
- プラズマパラメータの制御性が高い
- 計測器の配置が容易
- 単純な幾何学的配位

QED, PISCES-A (B), PDS, TPD-I (II), PSI-2, LENTA, ULS, MAP-II, TPD SHEET-IV, Magnum-PSI, ASEDAS, ...., GAMMA10 NAGDIS-I → NAGDIS-II → NAGDIS-T, PS-DIBA 装置の特徴を明確にすることが重要

# ダイバータシミュレータ研究の課題

次期核融合装置(ITER, JT-60SA)や原型炉への寄与の明確化 ダイバータプラズマ環境の模擬

適切な課題抽出

学術的研究成果-普遍化、データベース(予測性能を有する)

名古屋大学での取り組み W損傷過程,非接触プラズマ物理(原子分子),アーキング, 非線形シースダイナミクス,ダスト形成・輸送,周辺プラズマ輸送

新しい研究基盤の構築 **プラズモイドー定常高熱流プラズマ複合照射装置の開発** - ELM熱負荷の模擬 **高熱流プラズマ照射-イオンビーム解析複合装置の開発** - 水素同位体リテンション量のその場計測

# 先進プラズマ-壁相互作用(PWI)研究



■動的PWI研究

(動的状況下で実証⇒物理機構の解明)

量子ビーム技術を用いたその場計測(表面構造、リテンション計測)



#材料を非破壊のまま解析可能 #様々な計測手法

「・ラザフォード後方散乱法(RBS):試料の分析
・核反応分析法(NRA):重水素計測
●反跳粒子検出法(ERD):軽水素計測

# 水素同位体リテンションに関する様々な現象



# その場計測装置を開発する上で解決すべき課題



■その場計測装置開発によるPWI研究への展開

水素同位体リテンションの静的・動的挙動の解明
ダイバータ模擬環境での照射損傷が壁材料の水素同位体
リテンション量へ与える影響の解明

# Plasma Surface Dynamics with Ion Beam Analysis (PS-DIBA)



- i) Compact and powerful plasma source
- ii) Differential pumping to protect detectors and Van de Graaff accelerator
- iii) Ion beam monitoring system during plasma exposure

## Novel compact and powerful dc plasma source



# Discharge power dependences of the electron density $n_{\rm e}$ and temperature $T_{\rm e}$ at a center of plasma column



- Density is proportional to the discharge power.
- Electron temp. is almost constant around 5 eV.
- Higher *B*-field leads to higher density.



~ 4.5x10<sup>18</sup> m<sup>-3</sup> at 1.8 kW and 200 G

Capability of magnetic coils ~ 1.4 kG > >10<sup>19</sup> m<sup>-3</sup>

## Differential pumping to protect detectors and Van de Graaff



# Ion beam monitoring system during plasma exposure

It is impossible to measure the ion beam current at samples during plasma exposure.

To monitor the beam current, a rotating gold plate (Au) was installed in the beam line as a beam chopper.



0 5

1 5

Beam fluence at target [ $\mu$  C]

2

2 5

 Capable of measuring ion beam fluence during plasma irradiation

## Time dependence of deuterium retention of isotropic graphite



⇒Dynamic retention

Deuterium retention decreases slowly after plasma termination.

#### Deuterium retention of tungsten during plasma exposure



 Precise control of surface temperature is required independently plasma condition.

#### Deuterium retention of tungsten after plasma termination



## まとめと今後の課題

#### <u>まとめ</u>

- □動的リテンション分析の可能な、高熱流プラズマ照射装置とイオンビーム解析 装置が一体となったその場計測装置の開発を行った。
  - •LaB<sub>6</sub>製熱陰極の小型化を行い、ダイバータ模擬の可能な高密度(~10<sup>18</sup> m<sup>-3</sup>) 定常プラズマの生成に成功した。
  - ●半導体検出器(SSD)部とビームライン領域で異なる差動排気及び、ビーム照 射量のモニタリングを行い、プラズマ放電用ガス導入時においても、イオン ビーム分析ができるような高真空度を維持することが可能となった。

□開発した装置を用いて、プラズマ照射中の重水素リテンションのダイナ ミックスを計測することに成功した。

#### <u>今後の課題</u>

#### □動的リテンション量の粒子束依存性や温度依存性 □同位体置換効果(ERDの整備)