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¢ Background and Motivations

e Understandings of plasma-neutral-
Impurity interactions and realization

of predictive simulation.

e Evaluation of different divertor
configuration; open and closed.

¢ Approach
e Realization of three-dimensional

transport simulation in ergodic and

leg regions in the realistic geometry. 0.5

o Development of a three-dimensional z

transport code for LHD; EMC3-
EIRENE

e Validation by measurements.
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e Comparisons of results for open/closed

divertor configurations.
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@ Transport simulation of LHD peripheral plasmas
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@|EI\/IC3-EIRENE code

¢ EMC3 solves fluid equations of flux tube plasma in SOL.:
V,-(nv,)+V,-(-DV,n)=S5,

vy (v, -7V, )+ v, ‘(‘ mV,DV n-7,V,V,)=V,p+S,

V| =& VT, +gnTiv"j +V, .(— 7NV T —gTi Dvlnj =Kk(T,-T)+S,

V|| | _KevllTe +gnTeV||j+vL °(_ ZenvLTe _gTe Dvinj — _k(Te _Ti )+ See

¢ EMC3 can simulate plasma with ergodic magnetic field in LHD
by solving them with the aid of Monte Carlo method.
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Simulation box

e
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¢ 18°-section (1/20 of the torus) is realized in simulation by using
the periodicity and assumption of up-down symmetry.

¢ Meshes are generated on poloidal planes every 0.25°.
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¢ Conditions and Assumptions

e |nput power: 8M

W

e Electron density: 2x1013/cm?3 at LCFS
e Bohm condition is assumed at divertor plates
e Magnetic configuration: R_,=3.6m

e Perpendicular transport coefficient: D

perp

e No neutral-pumping (100% recycled)
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@ Simulation conditions and examples

=1 M?/S, Yperp=3 M?/s
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@ Neutral gas transport

¢ Influence of the closed configuration on neutral-gas pressure

e Compression of hydrogen gas

e Simulation gives 17 times higher density under the dome structure.
e It agrees with experimental measurement (10~20 times)
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|
¢ A series of simulation were carried out.
e Constant input power: 8BMW, n, at LCFS: 1, 2, 4,6, 8x10%3/cm3.

¢ Dependence of neutral pressure on electron density.

e Simulation results has the same scaling law as the experimental
measurements independently of configurations.
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@ Scaling of neutral pressure with electron density

Comparison of neutral
pressure; measurements

i of two discharges and

simulation results (solid
lines: 500K H, gas)



@ Hydrogen recycling

¢ Recycling in open/closed configuration
e Closed configuration causes large particle source, i.e. large recycling.
e Large ionization leads to large energy loss.

¢ Contribution of divertor legs on recycling

e Major contribution in low-density
discharges, 1~4x1013/cm3

e Minor contribution in high-density
discharges, 6~8x1013/cm3
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@ Impurity transport

¢ Impurity screening [M. Kobayashi et al., JNM 390 (2009) 325]
Friction force oc w, — divertor plates

Thermalforce <« V,T. —> core

Low-density discharge:
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Hight-density discharge:
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e,

T T T T T — le+12

60

el

o letll

L
T T T T T T T

~arhnan doncitn

le+10
200 250 300 350 400 450 500 550

80 T T R Lcml T T — let+l2

e

5 le+ll

rarhnn dencitn

-80 | | | | | |
200 250 300 350 400 450 500 550

R [cml 11

1e+10



@| Force balance on impurity ions

¢ Friction force % e(LCFS) 1X1013,Cm3 '

= B0

vs. thermal force S0 |
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@ Erosion rate of the divertor plates

¢ Assumptions for qualitative comparison
e Sputtering yield is fixed to 1%.
e Self sputtering is not included.
e Sputtered carbon is treated as an atom.

¢ Large recycling flux leads to large erosion.
¢ Modification to the closed configuration causes large erosion.
¢ Amount of the generation = Accumulation in the plasma
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@ Impurity retention in the plasma

1
¢ Total carbon amount, i.e. [C*]+[C?*]+...+[C5*]

e Leg regions
Impurity retention increase according to the electron density.

e Ergodic region
Screening effect of the plasma flow significantly reduces the retention in the
ergodic region.
No influence of configurations is observed in the case of high-density
discharges. — Why?

| (a) leg regions 1 (b) ergodic region
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@ ERO code

¢ Monte Carlo simulation code of erosion and redeposition
¢ Background plasma distribution is fixed in simulation.
¢ Code modification to use EMC3-EIRENE results is on going.
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.................................

Input:
N, Te,is
geometry PFC (substrate Be, C, W, Mo, ...)
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@| Heat load pattern

¢ EMC3-EIRENE results of heat load on divertor tiles.

e Global estimation of erosion.
¢ Influence of plasma parameters on the pattern.
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@| ERO simulation modeling

Background plasma from EMC3-EIRENE

4
¢ How poloidal/toroidal plasma-distribution affects
deposition/erosion of W.
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)
(@|W measurement in LHD

¢ A W-coated tile is installed.
¢ Other tiles are made of CFC.
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¢ Linear devices for divertor
simulation and PWI

e GAMMA10, NAGDIS-Il, MAGNUM-PSI, PISCES-B, PILOT-PSI, PSI-2,

JULE-PSI etc.

@ Simulation modeling of linear device

H. Tanaka, M. Kobayashi, G. Kawamura (NIFS)

N. Ohno, T. Kuwabara, M. Urakawa (Nagoya Univ.)

Y. Feng (Max-Planck IPP)

¢ Divertor-plasma codes have been developed for

tokamak/helical devices.

o 2D: B2-EIRENE (SOLPS), EDGE2D-NIMBUS, UEDGE-DEGAS2

o 3D: EMC3-EIRENE

¢ Simulation of linear device has been reported
but relatively new and challenging issue. B

e B2-EIRENE
e Cylindrical plasma and device

¢ Advantage of EMC3-EIRNE code
e 3D geometry of plasma and walls can be simulated.

e Realistic geometry without cylindrical assumption.

21




o Liner Device for PSI and detachment

@ NAGDIS-II in Nagoya University

uniform magnetic field
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@ Modeling of linear plasma

¢ Development is in progress.

main plasma region source region

volume source

€ >€ >
100cm 10cm

¢ Cylindrical mesh system.

¢ Wall and target plates with 3D shape
e \-shaped target in future

¢ Detachment studies
e NAGDIS-II

¢ PWI studies
e NAGDIS-II, GAMMAI1L0

y [em]
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@ Summary of the recent progress

¢ EMC3-EIRENE code and calculation mesh have been
extended to LHD with the closed divertor configuration.

¢ A validation by neutral gas pressure
e Influence of dome structure in closed configuration was analyzed.
e The scaling of neutral pressure to n(LCFS) is in good agreement.

¢ Impurity screening effect in the open/closed configuration.
e Screening effect due to the flow is recovered in the ergodic region.
e Increase of impurity generation in the closed configuration.

¢ Application to ERO simulation
¢ Modeling of a linear device
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@ Future plans

-

¢ Neutral particles
e Pumping under the dome, wall pumping, gas-puffing
e Penetration to the core (TASK3D)

¢ Impurities
e Divertor configuration
e Transport related to screening

¢ PWI
e Local simulation at LHD W tile (ERO)
e Global erosion estimation

¢ Measurements
e Transport coefficient modeling from Thomson scattering
e 2D imaging of impurity radiation
¢ Detachment
e LHD (impurity seeding, RMP)
e NAGDIS-II (1D)
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