平成23年度 合同研究会

筑波大学プラズマ研究センターシンポジューム

プラズマ物理クラスター スクレープオフ層とダイバー タ物理サブクラスター(第1回会合) 炉工学クラスター ブランケット サブクラスター(第2回会合)

双方向型共同研究会合「ガンマ10装置における炉壁材料の損耗・再堆積の研究と そのダイバータ開発戦略における位置づけ」

Satoshi Konishi¹, Kenzo Ibano¹, Yasushi Yamamoto² ¹Institute of Advanced Energy, Kyoto Univ. ²Kansai Univ.

> 2011.7.21 つくばサイエンスインフォメーションセンター大会議室

1. Fusion development

- 1. 炉設計から見て今妥当な目標は?
 - ーITER前の状況で発電炉が構想できるか?
 - -Q>20は可能か?必要か?
 - 大出力炉~3GWは必要か?
- 2. 社会的に、核融合の市場はどこにあるか?
 - 発電に(それも大型で安定性の約束できない、起動が 容易でない)どの程度の受容性があるか?

2.Plant design

- 1. ダイバータの役割は?
 - ー熱を受ける
 - ープラズマ粒子制御
 - 一 熱利用

パワーフローの考え方

Institute of Advanced Energy, Kyoto University

水冷却プラントの熱利用系の例

Divertor coolant

ダイバータは冷却をサブクールで稼ぐので熱利用価値が低い

現在想定できるプラズマ性能で設計する ー大型トカマクで実証されている ーITERで想定、計画されている

2.ブランケット

TBMにおける技術ベース -TBR>1は必要 ー温度、稼働率は次第に向上できる 一熱利用(高温化) ー小規模でも技術確証可能

3.ダイバータ

デタッチは必ずしも期待しない 冷却だけなら水、Heでできるが?? 熱利用ならブランケットと同じ媒体、近い温度

ほぼすべてのCD入力とα出力が壁に来る

- ーブランケットは、第1壁とバルク両方(表面は,1MW/m²を想定)
- ーどの程度が放射で分散できるかは不明
- ー高出力、高出力密度ではどちらもが厳しい

2.非定常負荷

ELMまでは分散されると考える。(それでも~10MW/m²) ーディスラプションは時定数で制御(蓄積エネルギーは来る) 一場所的局在は避けられない→部分が耐えても

平均すれば出口温度は低くなる

3. 粒子負荷

デタッチの状況によりスパッタリングが大きく違う タングステンの利用はさけられない

Fusion-biomass hybrid reactor for fuel production

- Small
- Major radius
- Neutron wall load

Pb-17Li blanket with SiC cooling panel

- PbLi cooling, SiC structure.
- Heat conductivity of structural materials is a key.

Solving power & particle balance by simple Core-SOL-Divertor model^{*}.

[1] R. Hiwatari and *et al*, Contrib. Plasma Phys. **44** (2004) 76-82

放射冷却の効果

Institute of Advanced Energy, Kyoto University

Pressure drop along the poloidal flow and the fast toroidal flow was evaluated.

A.R. Raffray and et.al., FED 55(2001)55

P. Norajitra and et.al., FED 83(2008)893

Power plant designs

	PPCD -B	PPCD - C	PPCD - D	ARIES-AT
fBS	0,36	0,69	0,76	0,92
βN	3,3	4,0	4,5	5,4
Q	15	30	35	51
plant factor	75-80%	75-80%	75-80%	76/85%
magnets	Nb3Sn	Nb3Sn	Nb3Sn	Nb3Sn/HTS
structural materials	Eurofer	Eurofer+SiCSiC inserts;Eurofer ODS for first wall	SiC/SiC	SiC/SiC
blanket coolant	He	He+PbLi	PbLi	PbLi
breeding blanket	HCPB	PbLi	PbLi /	PbLi
divertor coolant	He	He	He or PbLi	PbLi
design divertor heat load	10	10	5	5
thermal power cycle efficiency	40,5%	~43%	~59%	59%
<neutron wall<br="">load>[MW/m2]</neutron>	1,8	2,2	2,4	3,3

Coolant flow, pressure drop, pump power were studied for various P_{fus} reactors.

 $P_{\text{fus}} \ge 1$ GW: advanced performance target, complex structure.

 $P_{\rm fus}$ < 500MW : reasonable assumption, simple structure.

Biomass-hybrid ~ 500 MW has a operation window with the PbLi cooled compoents.

熱伝導度	λ	20	W/m/K
ヤング率	Е	460	Gpa
ポワソン比	V	0.21	
熱膨張率	α	4.40E-06	/K
密度	ρ	3220	kg/m3
破壊強度	Sm	345 ± 70	Мра

- 材料の厚さ、熱流束と熱伝導度による温度差、応力により設計ウィンドウが決まる。
- 現在得られるSiCではバイオマスハイブリッド領域なら設計は 可能だが非常に厳しい。
- 照射による熱伝導の低下を考慮していない。

- Oバイオマスーハイブリッド概念は現状想定されるプラズマパラメータ で核融合エネルギー発生を実証しうる.
 - ・熱出力は500MW程度.Q~5で正味出力
 - ・製品(炭素フリー液体燃料)の市場性
- O小型の核融合装置開発ステップとしての意義がある
 - ITERと同時期から、炉工学、nuclear technologyの 研究ステップに利用できる
 - ダイバータ、第1壁は実用的条件で性能を向上することが 要求される。デタッチ、放射冷却、ELM制御等も課題
 - R=~5mの小型装置で、ダイバータ、ブランケットとして 無理の少ない設計領域。パルス可。
- 〇高温ブランケット/ダイバータ開発は急務
 - SiC-LiPb ブランケット/ダイバータを開発中
 - ・並行してバイオマス燃料合成もベンチスケールで実証

〇現状のダイバータ設計と開発

- ・ITERや大型トカマクで想定されている10MWの領域
- ・粒子負荷を考えればタングステンしか表面は解がない
- 冷却だけなら水、ヘリウムで可能
- ・冷却材チャンネルを考えると強度要件が厳しくなる
- 熱流束、熱応力、材料厚さ、熱伝導度の相関で設計ウィンドウが 決まる。
- 冷却材と熱利用系を考えたダイバータ開発戦略の重要性
 - 液体金属冷却は、冷却能力に劣るものの、出口温度の高さ、
 (液体ブランケットなら特に)ブランケット冷却との
 整合性、非圧縮性、低圧に基づく安全性にメリット
 - 液体金属冷却の設計ウィンドウは狭く、バイオマス
 ハイブリッド領域以外は極めて厳しい
 - ・SiC-W材料が適合できるが熱伝導がネックになる。